Skip to main content

Evolutionary Impacts of Alternative Transposition

  • Chapter
  • First Online:
Origin and Evolution of Biodiversity

Abstract

With the development of rapid DNA-sequencing techniques, more and more eukaryotic genomes are sequenced, assembled, and annotated. Now, we know that many eukaryotic genomes are large, highly repetitive, and very complex. One question that remains is what evolutionary forces generate the complexity of eukaryotic genomes? In this chapter, we discuss one of the possible answers to this question: the capacity of transposable elements to induce diverse genomic recombinations through various transposition reactions. Transposable elements (TEs or transposons) are DNA sequences that can move from one genomic location to another, and they are highly represented in most eukaryotic genomes. TEs are often called “junk DNA” because most copies are silenced and have no obvious function; however, various studies have indicated that TEs have made major contributions to shaping eukaryotic genomes and regulating gene expression. We show that TE transpositions can induce a variety of genome rearrangements including deletion, inversion, duplication, and translocation. These occur as direct products of alternative transposition pathways. Unlike standard transposition which involves only one transposon, alternative transposition involves two distinct TEs, undergoes more complicated movements, and generates more significant genome structure variations. Here, we describe various types of alternative transposition pathways, the diverse genome rearrangements they generate, and their potential role in the process of genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281(5373):60–63

    Article  CAS  PubMed  Google Scholar 

  • Brink RA, Styles ED (1966) A collection of pericarp factors. Maize Genet Coop News Lett 40:149–160

    Google Scholar 

  • Burr B, Burr FA (1982) Ds controlling elements of maize at the shrunken locus are large and dissimilar insertions. Cell 29(3):977–986

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Greenblatt IM, Dellaporta SL (1987) Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117(1):109–116

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Greenblatt IM, Dellaporta SL (1992) Molecular analysis of Ac transposition and DNA replication. Genetics 130(3):665–676

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Tang Y, Liu J, Tan L, Jiang J, Wang M, Sun C (2017) Emergence of a novel chimeric gene underlying grain number in rice. Genetics 205(2):993–1002

    Google Scholar 

  • Chuong EB, Elde NC, Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351(6277):1083–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courage-Tebbe U, Döring HP, Fedoroff N, Starlinger P (1983) The controlling element Ds at the Shrunken locus in Zea mays: structure of the unstable sh-m5933 allele and several revertants. Cell 34(2):383–393

    Article  CAS  PubMed  Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25(1):173–199

    Article  CAS  PubMed  Google Scholar 

  • Duan CG, Wang X, Xie S, Pan L, Miki D, Tang K, Wang Z (2017) A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res 27(2):226

    Google Scholar 

  • English J, Harrison K, Jones JD (1993) A genetic analysis of DNA sequence requirements for dissociation state I activity in tobacco. Plant Cell 5(5):501–514

    Google Scholar 

  • Goettel W, Messing J (2009) Change of gene structure and function by non-homologous end-joining, homologous recombination, and transposition of DNA. PLoS Genet 5(6):e1000516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goettel W, Messing J (2013) Epiallele biogenesis in maize. Gene 516(1):8–23

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt IM, Brink RA (1962) Twin mutations in medium variegated pericarp maize. Genetics 47(4):489–501

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142(4):1349–1355

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Oliver B (2006) Global analysis of X-chromosome dosage compensation. J Biol 5(1):3

    Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16(2):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Le Petillon Y (2016) Discovery of an active RAG transposon illuminates the origins of V (D) J recombination. Cell 166(1):102–114

    Google Scholar 

  • Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim SB (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18(1):210

    Google Scholar 

  • Lander Eric S, Linton Lauren M, Bruce B, Chad N, Zody Michael C, Jennifer B, Roel F (2001) Initial sequencing and analysis of the human genome

    Google Scholar 

  • Long M, Langley CH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260(5104):91–95

    Article  CAS  PubMed  Google Scholar 

  • Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M (2009) Tissue-and expression level-specific chromatin looping at Maize b1 epialleles. Plant Cell 21(3):832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154

    Article  CAS  PubMed  Google Scholar 

  • Lynch VJ, Nnamani M, Brayer KJ, Emera D, Wertheim JO, Pond SLK, Feschotte C (2012) Lineage-specific transposons drove massive gene expression recruitments during the evolution of pregnancy in mammals. arXiv:1208.4639

  • Mayo S, Monfort S, Roselló M, Orellana C, Oltra S, Caro-Llopis A, Martínez F (2017) Chimeric genes in deletions and duplications associated with intellectual disability. International J Genomics

    Google Scholar 

  • McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Year Book 47:155–169

    Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci 36(6):344–355

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1951). Chromosome organization and genic expression. In: Cold Spring Harbor symposia on quantitative biology, vol 16. Cold Spring Harbor Laboratory Press, pp 13–47

    Google Scholar 

  • Michel B, Ehrlich SD, Uzest M (1997) DNA double-strand breaks caused by replication arrest. EMBO J 16(2):430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Stam M (2017) Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol 18(1):137

    Google Scholar 

  • Peters JE, Craig NL (2001) Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev 15(6):737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole JRM, Huang SF, Xu A, Bayet J, Pontarotti P (2017a) The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 69(6):391–400

    Article  CAS  Google Scholar 

  • Poole JRM, Paganini J, Pontarotti P (2017b) Convergent evolution of the adaptive immune response in jawed vertebrates and cyclostomes: An evolutionary biology approach based study. Dev Comp Immunol 75:120–126

    Article  CAS  Google Scholar 

  • Pray LA (2008) Transposons: The jumping genes. Nature education 1(1):204

    Google Scholar 

  • Pulletikurti V, Yu C, Peterson T, Weber DF (2009) Cytological evidence that alternative transposition by Ac elements causes reciprocal translocations and inversions in Zea mays L. Maydica 54:457

    Google Scholar 

  • Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Lee MK (2013) Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 93(4):697–710

    Google Scholar 

  • Roberts D, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43(1):117–130

    Article  CAS  PubMed  Google Scholar 

  • Rogers RL, Bedford T, Hartl DL (2009) Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics 181(1):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers RL, Bedford T, Lyons AM, Hartl DL (2010) Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster. Proc Natl Acad Sci 107(24):10943–10948

    Article  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Google Scholar 

  • Sidorenko LV, Li X, Cocciolone SM, Chopra S, Tagliani L, Bowen B, Peterson T (2000) Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants. Plant J 22(6):471–482

    Google Scholar 

  • Singh M, Lewis PE, Hardeman K, Bai L, Rose JK, Mazourek M, Brutnell TP (2003) Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell 15(4):874–884

    Google Scholar 

  • Wang D, Peterson T (2013) Isolation of sequences flanking Ac insertion sites by Ac casting. In: Plant transposable elements. Humana Press, Totowa, NJ, pp 117–122

    Google Scholar 

  • Wang D, Yu C, Zuo T, Zhang J, Weber DF, Peterson T (2015) Alternative transposition generates new chimeric genes and segmental duplications at the maize p1 locus. Genetics 201(3):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Lu Z (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18(8):1791–1802

    Google Scholar 

  • Weil CF, Wessler SR (1993) Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5(5):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Yu Y, Haberer G, Mayer KF, Marri PR, Rounsley S, Roffler S (2016) DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat Commun 7:12790

    Google Scholar 

  • Yadav VK, Rai KM, Yadav VK, Sable A (2016) An overview of transcription regulatory elements in plant. J Biol Sci Med 2(4):13–23

    Google Scholar 

  • Zhang J, Peterson T (1999) Genome rearrangements by nonlinear transposons in maize. Genetics 153(3):1403–1410

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Peterson T (2004) Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167(4):1929–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peterson T (2005a) A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize. Genetics 171(1):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Peterson T (2005b) Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region. Plant Cell 17(3):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Chopra S, Peterson T (2000) A segmental gene duplication generated differentially expressed myb-homologous genes in maize. Plant Cell 12(12):2311–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang F, Peterson T (2006) Transposition of reversed Ac element ends generates novel chimeric genes in maize. PLoS Genet 2(10):e164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Peterson T (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23(6):755–765

    Google Scholar 

  • Zhang J, Zuo T, Peterson T (2013) Generation of tandem direct duplications by reversed-ends transposition of maize Ac elements. PLoS Genet 9(8):e1003691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zuo T, Wang D, Peterson T (2014) Transposition-mediated DNA re-replication in maize. Elife 3

    Google Scholar 

  • Zuo T, Zhang J, Lithio A, Dash S, Weber DF, Wise R, Peterson T (2016) Genes and small RNA transcripts exhibit dosage-dependent expression pattern in maize copy-number alterations. Genetics 203(3):1133–1147

    Google Scholar 

Download references

Acknowledgements

This Research is supported by the USDA National Institute of Food and Agriculture Hatch project number IOW05282, and by State of Iowa funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, W., Sharma, S.P., Peterson, T. (2018). Evolutionary Impacts of Alternative Transposition. In: Pontarotti, P. (eds) Origin and Evolution of Biodiversity. Springer, Cham. https://doi.org/10.1007/978-3-319-95954-2_7

Download citation

Publish with us

Policies and ethics