Tracing the Evolutionary Origin of the Gut–Brain Axis



Colonization of body epithelial surfaces with a rather specific microbial community is a fundamental feature of all animals. Recent studies suggest that in mammals the enteric microbiota has a bidirectional communication with the nervous system. The complexity of these interactions is referred to as “gut–brain axis”. Highlighting the significance of these interactions are studies in mice which show that the intestinal microbiota can directly affect complex behaviour. The origin and ancestral function of these interactions are not well understood. Here, I review findings that neurons in the early emerging metazoan Hydra secrete neuropeptides which shape the microbiome on the body surface. I also discuss recent observations which indicate that symbiotic bacteria modulate spontaneous body contractions in Hydra. Germ-free polyps show strongly reduced and less regular spontaneous contraction frequencies. The effects on contraction frequency were partially restored by reconstituting the natural microbiota. These findings strongly suggest that the influence of bacteria on neuronal activity is the outcome of an evolutionary ancient interaction between bacteria and metazoans, opening a window into investigating the basic mechanisms of, for example, neurological disorders in vertebrates.


Host–microbe interaction Nerve system Hydra AMPs Commensal microbiota Metaorganism Holobiont Neuropeptides 



I am particularly thankful to René Augustin, Sebastian Fraune, Alexander Klimovich, and Andrea Murillo-Rincon for their pioneering contributions towards uncovering microbe–neuron interactions in Hydra. I thank Andrea Murillo-Rincon and Alexander Klimovich for providing pictures and figures for this review. And I gratefully appreciate the support from the Canadian Institute for Advanced Research (CIFAR). This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (CRC1182 “Origin and Function of Metaorganisms”, DFG grant BO 848/15-3, and grants from the DFG Cluster of Excellence programme “Inflammation at Interfaces”).


  1. Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Exp Biol Med 126:301–304CrossRefGoogle Scholar
  2. Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, Herbst E-M, Wittlieb J, Schwentner M, Grötzinger J, Wassenaar TM et al (2017) A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat Commun 8:698CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bach JF (2002) The effect of infections on susceptibility to autoimmune and and allergic diseases. N Engl J Med 347(2002):911–920CrossRefPubMedGoogle Scholar
  4. Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386CrossRefPubMedGoogle Scholar
  5. Bienenstock J, Kunze W, Forsythe P (2015) Microbiota and the gut–brain axis. Nutr Rev 73:28–31CrossRefPubMedGoogle Scholar
  6. Bode H, Berking S, David CN, Gierer A et al (1973) Quantitative analysis of cell types during growth and morphogenesis in Hydra. Wilhelm Roux’Archiv für Entwicklungsmechanik der Org 171:269–285CrossRefGoogle Scholar
  7. Bode HR (1992) Continuous conversion of neuron phenotype in hydra. Trends Genet 8:279–284CrossRefPubMedGoogle Scholar
  8. Bosch TCG, Miller DJ (2016) The holobiont imperative. Springer, ViennaCrossRefGoogle Scholar
  9. Bosch TCG, Adamska M, Augustin R, Domazet-Loso T, Foret S, Fraune S, Funayama N, Grasis J, Hamada M, Hatta M, Hobmayer B, Kawai K, Klimovich A, Manuel M, Shinzato C, Technau U, Yum S, Miller DJ (2014) How do environmental factors influence life cycles and development? An experimental framework for early-diverging metazoans. BioEssays 36(12):1185–1194CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bosch TCG, Klimovich A, Domazet-Lošo T, Gründer S, Holstein TW, Jékely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS et al (2017) Back to the basics: cnidarians start to fire. Trends Neurosci 40:92–105CrossRefPubMedGoogle Scholar
  11. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158–263ra158Google Scholar
  12. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050–16055CrossRefPubMedGoogle Scholar
  13. Campbell RD (1976) Elimination by Hydra interstitial and nerve cells by means of colchicine. J Cell Sci 21:1–13PubMedGoogle Scholar
  14. Catania F, Krohs U, Chittò M, Ferro D, Ferro K, Lepennetier G, Görtz HD, Schreiber RS, Kurtz J, Gadau J (2017) The hologenome concept: we need to incorporate function. Theory Biosci 136(3–4):89–98CrossRefPubMedGoogle Scholar
  15. Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, Kanner R, Bencosme Y, Lee YK, Hauser SL et al (2017) Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci 201711235Google Scholar
  16. Chapman JA, Kirkness EF, Simakov O et al (2010) The dynamic genome of Hydra. Nature (7288):592–596Google Scholar
  17. Chen X, D’Souza R, Hong S-T (2013) The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 4:403–414CrossRefPubMedPubMedCentralGoogle Scholar
  18. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26:98–107CrossRefPubMedGoogle Scholar
  19. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735CrossRefPubMedGoogle Scholar
  20. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CrossRefPubMedGoogle Scholar
  21. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefGoogle Scholar
  22. Deines P, Lachnit T, Bosch TCG (2017) Competing forces maintain the Hydra metaorganism. Immunol Rev 279(1):123–136CrossRefPubMedGoogle Scholar
  23. Deloose E, Janssen P, Depoortere I, Tack J (2012) The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 9:271–285CrossRefPubMedGoogle Scholar
  24. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148CrossRefPubMedGoogle Scholar
  25. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052CrossRefPubMedGoogle Scholar
  26. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726CrossRefPubMedGoogle Scholar
  27. Doenyas C (2018) Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience 374:271–286CrossRefPubMedGoogle Scholar
  28. Dupre C, Yuste R (2017) Non-overlapping neural networks in Hydra vulgaris. Curr Biol 27:1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  29. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735CrossRefPubMedGoogle Scholar
  30. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977CrossRefPubMedPubMedCentralGoogle Scholar
  31. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70:55–69CrossRefPubMedGoogle Scholar
  32. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG, Fraune S (2013a) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci USA 110:E3730–E3738CrossRefPubMedGoogle Scholar
  33. Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG (2013b) Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J 7(4):781–790Google Scholar
  34. Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151CrossRefPubMedGoogle Scholar
  35. Fraune S, Abe Y, Bosch TCG (2009a) Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ Microbiol 11:2361–2369CrossRefPubMedGoogle Scholar
  36. Fraune S, Augustin R, Bosch TCG (2009b) Exploring host-microbe interactions in hydra. Microbe 4(10):457–462Google Scholar
  37. Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schröder K, Willoweit-Ohl D, Bosch TCG (2015) Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J 9:1543–1556CrossRefPubMedGoogle Scholar
  38. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317CrossRefPubMedGoogle Scholar
  39. Gonzales DL, Badhiwala KN, Vercosa DG, Avants BW et al (2017) Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nat Nanotechnol 12:684CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hadizadeh F, Walter S, Belheouane M, Bonfiglio F, Heinsen F-A, Andreasson A, Agreus L, Engstrand L, Baines JF, Rafter J et al (2017) Stool frequency is associated with gut microbiota composition. Gut 66:559–560CrossRefPubMedGoogle Scholar
  42. Hansen GN, Williamson M, Grimmelikhuijzen CJP (2000) Two-color double-labeling in situ hybridization of whole-mount Hydra using RNA probes for five different Hydra neuropeptide preprohormones: evidence for colocalization. Cell Tissue Res 301:245–253CrossRefPubMedGoogle Scholar
  43. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher JJ, Fåk F, Jucker M, Lasser T et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hata T, Asano Y, Yoshihara K, Kimura-Todani T, Miyata N, Zhang X-T et al (2017) Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 12(7):e0180745CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463CrossRefPubMedPubMedCentralGoogle Scholar
  46. Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T, Hellstrom PM, Sundler F, Chen J, Midtvedt T, Hellström PM et al (2001) Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 280:G368–G380CrossRefPubMedGoogle Scholar
  47. Jékely G, Paps J, Nielsen C (2015a) The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evodevo 6:1CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jékely G, Keijzer F, Godfrey-Smith P, Jékely G, Keijzer F, Godfrey-Smith P (2015b) An option space for early neural evolution. Philos Trans R Soc B-Biol Sci 370:1–12CrossRefGoogle Scholar
  49. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V (2015) Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85:289–295CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kass-Simon G (1972) Longitudinal conduction of contraction burst pulses from hypostomal excitation loci in Hydra attenuata. J Comp Physiol 80:29–49CrossRefGoogle Scholar
  52. Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. In: Molecular basis of multiple sclerosis. Springer, pp 197–216Google Scholar
  53. Koizumi O (2002) Developmental neurobiology of hydra, a model animal of cnidarians. Can J Zool 80:1678–1689CrossRefGoogle Scholar
  54. Koizumi O, Sato N, Goto C (2004) Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review. Hydrobiologia 530:41–47Google Scholar
  55. Koropatnick T, Goodson Michael S, Heath-Heckman Elizabeth AC, McFall-Ngai M (2014) Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association. Biol Bull 226(1):56–68CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499Google Scholar
  57. Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, Martin L, Neff NF, Okamoto J, Wong RJ et al (2017) Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci USA 201707009Google Scholar
  58. Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, Yarmush ML, Alaniz RC, Jayaraman A, Lee K (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23(4):1099–1111CrossRefPubMedGoogle Scholar
  59. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefGoogle Scholar
  60. Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, Zhang H, Jin J, Chen W, Pang M et al (2015) Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015:412946PubMedPubMedCentralGoogle Scholar
  61. Loomis WF (1955) Glutathione control of the specific feeding reactions of hydra. Ann NY Acad Sci 62:211–227CrossRefGoogle Scholar
  62. Marcum BA, Campbell RD (1978) Development of Hydra lacking nerve and interstitial cells. J Cell Sci 29:17 LP-33Google Scholar
  63. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRefPubMedGoogle Scholar
  64. McFall-Ngai M (2014) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12(2):e1001783CrossRefPubMedPubMedCentralGoogle Scholar
  65. McFall-Ngai M (2015) Giving microbes their due—animal life in a microbially dominant world. J Exp Biol 218:1968–1973CrossRefGoogle Scholar
  66. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236CrossRefPubMedGoogle Scholar
  67. Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR et al (2016) Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 15(1945–1956):58Google Scholar
  68. Mortzfeld BM, Bosch TCG (2017) Eco-aging: stem cells and microbes are controlled by aging antagonist FoxO. Curr Opin Microbiol 38:181–187CrossRefPubMedGoogle Scholar
  69. Murillo-Rincon AP, Klimovich A, Pemöller E, Taubenheim J et al (2017) Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 7:15937CrossRefPubMedPubMedCentralGoogle Scholar
  70. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(255–64):e119Google Scholar
  71. O’Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM et al (2014) Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277:885–901CrossRefPubMedGoogle Scholar
  72. Passano LM, McCullough CB (1963) Pacemaker hierarchies controlling the behaviour of Hydras. Nature 199:1174–1175CrossRefPubMedGoogle Scholar
  73. Passano LM, McCullough CB (1964) Co-and behaviour in Hydra: I. Pacemaker system of the periodic contractions. J Exp Biol 41:643–664Google Scholar
  74. Passano LM, McCullough CB (1965) Co-ordinating systems and behaviour in Hydra II. The rhythmic potential system. J Exp Bwl 43:205–231Google Scholar
  75. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G (2015) Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci USA 112:15402–15407CrossRefPubMedGoogle Scholar
  76. Quigley EMM (2011) Microflora modulation of motility. J Neurogastroenterol Motil 17:140–147CrossRefPubMedPubMedCentralGoogle Scholar
  77. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29(4):1395–1403CrossRefPubMedGoogle Scholar
  78. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (80):341, 1241214–1241214Google Scholar
  79. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenburg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefGoogle Scholar
  80. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12Google Scholar
  82. Schröder K, Bosch TCG (2016) The origin of mucosal immunity: lessons from the holobiont Hydra. mBio 7:e01184–16Google Scholar
  83. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The Central Nervous System and the Gut Microbiome. Cell 167:915–932CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK (2016) Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci 113:10097–10102CrossRefPubMedGoogle Scholar
  85. Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69CrossRefPubMedGoogle Scholar
  86. Sonnenburg JL, Bäckhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64CrossRefPubMedPubMedCentralGoogle Scholar
  87. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav 13:69–86CrossRefPubMedGoogle Scholar
  88. Stokes DR, Rushforth NB (1979) Contraction pulse system in hydroids. Comp Biochem Physiol 64(A):207–212Google Scholar
  89. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5:24CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-NX, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275CrossRefPubMedPubMedCentralGoogle Scholar
  91. Takaku Y, Hwang JS, Wolf A, Böttger A, Shimizu H, David CN, Gojobori T (2014) Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps. Sci Rep 4:3573CrossRefPubMedPubMedCentralGoogle Scholar
  92. Theis KR, Dheilly NM, Klassen J, Brucker RM, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028-16Google Scholar
  93. Thompson GR, Trexler PC (1971) Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut 12:230–235CrossRefPubMedPubMedCentralGoogle Scholar
  94. Trembley A (1744) Mémoires, Pour Servir à l´Histoire d´un Genre de Polypes d´Eau Douce, à Bras en Frome de Cornes. Verbeek, Leiden (Netherlands)Google Scholar
  95. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65:57–62CrossRefPubMedGoogle Scholar
  96. Vantrappen G, Janssens J, Hellemans J, Ghoos Y (1977) The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. 59Google Scholar
  97. Vitale F, Vercosa D, Rodriguez AV, Pamulapati SS et al (2017) Fluidic microactuation of flexible electrodes for neural recording. Nano LettGoogle Scholar
  98. Wagner G (1905) Memoirs: on some movements and reactions of Hydra. J Cell Sci 2:585–622Google Scholar
  99. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103(16):6208–6211CrossRefPubMedGoogle Scholar
  100. Woese CR (2014) A new biology for a new century. Microbiol Mol Biol Rev 68(2):173–186CrossRefGoogle Scholar
  101. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganims in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zoological Institute, Christian-Albrechts-University KielKielGermany

Personalised recommendations