Skip to main content

Feralisation—The Understudied Counterpoint to Domestication

Abstract

Feralisation is a complex process that occurs when a domestic population is returned to the wild. It impacts species invasion biology, speciation, conservation and hybridisation and can be thought of as the reverse of domestication. Domestication has been an area of intense interest and study ever since Darwin, and useful as a model for evolution and the effects of strong directional selection. Despite domestication being used to identify genes affecting a large number of traits that change with selection, little is known about the genomic changes associated with feralisation. Much of the current work on the genetics of feralisation has focused on the detection of early hybrids (F1 or F2) between wild and domestic populations. Feralisation can lead to large changes in morphology, behaviour and many other traits, with the process of feralisation involving the sudden return of both natural and sexual selection. Such evolutionary forces influence predatory, foraging and mate choice decisions and exert strong effects on once domesticated, now feral, individuals. As such, feralisation provides a unique opportunity to observe the genomic and phenotypic responses to selection from a known (domesticated) standpoint and identify the genes underlying these selective targets. In this review, we summarise what is known in particular regarding the genomics of feralisation, and also the changes that feralisation has induced on brain size and behaviour.

Keywords

  • Domestic Population
  • Strong Directional Selection
  • Brain Composition
  • Comb Size
  • Feral Animals

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95954-2_11
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95954-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

References

  • Adams J, Leonard J, Waits L (2003) Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol Ecol 12:541–546

    CrossRef  PubMed  CAS  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    CrossRef  Google Scholar 

  • Baratti M, Ammannati M, Magnelli C, Dessì-Fulgheri F (2005) Introgression of chukar genes into a reintroduced red-legged partridge (Alectoris rufa) population in central Italy. Anim Genet 36:29–35

    CrossRef  PubMed  CAS  Google Scholar 

  • Barilani M, Bernard-Laurent A, Mucci N, Tabarroni C, Kark S, Garrido JAP, Randi E (2007) Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biol Conserv 137:57–69

    CrossRef  Google Scholar 

  • Barlow C (1999) Rewilding for evolution. Wild Earth 9:53–56

    Google Scholar 

  • Beaumont M, Barratt E, Gottelli D, Kitchener A, Daniels M, Pritchard J, Bruford M (2001) Genetic diversity and introgression in the Scottish wildcat. Mol Ecol 10:319–336

    CrossRef  PubMed  CAS  Google Scholar 

  • Browne RA, Griffin CR, Chang PR, Hubley M, Martin AE (1993) Genetic divergence among populations of the Hawaiian Duck, Laysan Duck, and Mallard. Auk 49–56

    Google Scholar 

  • Clop A et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    CrossRef  PubMed  CAS  Google Scholar 

  • Darwin C (1859) The origin of species. Mentor, New York

    Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication. John Murray, London

    Google Scholar 

  • Derenne P, Mougin J (1976) DONNÉES CRANIOMÉTRIQUES SUR LE LAPIN ET LE CHAT HARET DE L’ ILE AUX COCHONS, ARCHIPEL CROZET (46° 06′ S, 50° 14′ E). Mammalia 40:495–516

    Google Scholar 

  • Dierendonck MC, Vries MF (1996) Ungulate reintroductions: experiences with the takhi or Przewalski horse (Equus ferus przewalskii) in Mongolia. Conserv Biol 10:728–740

    CrossRef  Google Scholar 

  • Donlan J (2005) Re-wilding north America. Nature 436:913–914

    CrossRef  CAS  PubMed  Google Scholar 

  • Ebinger P, Löhmer R (1984) Comparative quantitative investigations on brains of rock doves, domestic and urban pigeons (Columba 1. livia) 1. J Zool Syst Evol Res 22:136–145

    Google Scholar 

  • Ebinger P, Löhmer R (1986) A volumetric comparison of brains between greylag geese (Anser anser L.) and domestic geese. J Hirnforsch 28:291–299

    Google Scholar 

  • Ebinger P, Röhrs M (1994) Volumetric analysis of brain structures, especially of the visual system in wild and domestic turkeys (Meleagris gallopavo). J Hirnforsch 36:219–228

    Google Scholar 

  • Fabbri E et al (2007) From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol Ecol 16:1661–1671

    CrossRef  CAS  PubMed  Google Scholar 

  • Fleming I, Einum S (1997) Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J Mar Sci 54:1051–1063

    Google Scholar 

  • Flux JE, Fullagar PJ (1992) World distribution of the Rabbit Oryctolagus funiculus on islands. Mamm Rev 22:151–205

    CrossRef  Google Scholar 

  • Fujii J et al (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451

    CrossRef  CAS  PubMed  Google Scholar 

  • Gamborg C, Gremmen B, Christiansen SB, Sandøe P (2010) De-domestication: ethics at the intersection of landscape restoration and animal welfare. Environ Values 57–78

    Google Scholar 

  • Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed-ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol Ecol 24:2112–2124

    CrossRef  CAS  PubMed  Google Scholar 

  • Gethöffer F, Sodeikat G, Pohlmeyer K (2007) Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur J Wildl Res 53:287–297

    CrossRef  Google Scholar 

  • Goedbloed D et al (2013a) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866

    CrossRef  CAS  PubMed  Google Scholar 

  • Goedbloed DJ et al (2013b) Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet 14:43

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gonda A, Herczeg G, Merilä J (2013) Evolutionary ecology of intraspecific brain size variation: a review. Ecol Evol 3:2751–2764

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Grobet L et al (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet

    Google Scholar 

  • Haase B et al (2009) Seven novel KIT mutations in horses with white coat colour phenotypes. Anim Genet 40:623–629

    CrossRef  CAS  PubMed  Google Scholar 

  • Hager R, Lu L, Rosen GD, Williams RW (2012) Genetic architecture supports mosaic brain evolution and independent brain–body size regulation. Nat Commun 3:1079

    CrossRef  PubMed  CAS  Google Scholar 

  • Hampton JO et al (2004) Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J Appl Ecol 41:735–743

    CrossRef  CAS  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6:e1001139

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Henriksen R, Johnsson M, Andersson L, Jensen P, Wright D (2016) The domesticated brain: genetics of brain mass and brain structure in an avian species. Sci Rep 6:p.34031. https://doi.org/10.1038/srep34031

  • Hutchings JA, Fraser DJ (2008) The nature of fisheries-and farming-induced evolution. Mol Ecol 17:294–313

    CrossRef  PubMed  Google Scholar 

  • Jensen P, Wright D (2014) Behavioral genetics and animal domestication. In: Grandin T, Deesing MJ (eds) Genetics and behavior of domestic animals. Academic Press, London, pp 41–80

    CrossRef  Google Scholar 

  • Johnsson M et al (2012) A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genet 8:e1002914. https://doi.org/10.1371/journal.pgen.1002914

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnsson M et al (2014) The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken. Mol Ecol 23:2275–2286

    CrossRef  PubMed  CAS  Google Scholar 

  • Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D (2015a) Genetic regulation of bone metabolism in the chicken: similarities and differences to mammalian systems. PLoS Genet 11:e1005250. https://doi.org/10.1371/journal.pgen.1005250

    CrossRef  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D (2015b) Quantitative trait locus and genetical genomics analysis identifies putatively causal genes for fecundity and brooding in the chicken. G3: Genes|Genomes|Genetics. https://doi.org/10.1534/g3.115.024299

  • Johnsson M et al (2016a) Feralisation targets different genomic loci to domestication in the chicken. Nat Commun 7:12950. https://doi.org/10.1038/ncomms12950. http://www.nature.com/articles/ncomms12950-supplementary-information

  • Johnsson M, Williams MJ, Jensen P, Wright D (2016b) Genetical genomics of behavior: a novel chicken genomic model for anxiety behavior. Genetics 202:327–340

    Google Scholar 

  • Johnsson M, Henriksen R, Fogelholm J, Höglund A, Jensen P, Wright D (2018a) Genetics and genomics of social behavior in a chicken model. Genetics. https://doi.org/10.1534/genetics.118.300810

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Johnsson M, Henriksen R, Höglund A, Fogelholm J, Jensen P, Wright D (2018b) Genetical genomics of growth in a chicken model. BMC Genom 19:72. https://doi.org/10.1186/s12864-018-4441-3

    CrossRef  Google Scholar 

  • Kidd A, Bowman J, Lesbarreres D, Schulte-Hostedde A (2009) Hybridization between escaped domestic and wild American mink (Neovison vison). Mol Ecol 18:1175–1186

    CrossRef  PubMed  CAS  Google Scholar 

  • Kruska D (2005) On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication and feralization. Brain Behav Evol 65:73–108

    CrossRef  PubMed  Google Scholar 

  • Kruska D, Röhrs M (1974) Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Zeitschrift für Anatomie und Entwicklungsgeschichte 144:61–73

    CrossRef  PubMed  CAS  Google Scholar 

  • Kruska D, Sidorovich V (2003) Comparative allometric skull morphometrics in mink (Mustela vison Schreber, 1777) of Canadian and Belarus origin; taxonomic status. Mamm Biol-Zeitschrift für Säugetierkunde 68:257–276

    CrossRef  Google Scholar 

  • Larson G et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci 111:6139–6146

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    CrossRef  PubMed  Google Scholar 

  • Lynch M, O’hely M (2001) Captive breeding and the genetic fitness of natural populations. Conserv Genet 2:363–378

    CrossRef  Google Scholar 

  • McGinnity P et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond B: Biol Sci 270:2443–2450

    CrossRef  Google Scholar 

  • McOrist S, Kitchener AC (1994) Current threats to the European wildcat, Felis silvestris, in Scotland. Ambio (Sweden)

    Google Scholar 

  • Menotti-Raymond M et al (2003) Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). J Hered 94:95–106

    CrossRef  CAS  PubMed  Google Scholar 

  • Milan D et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248–1251

    CrossRef  CAS  PubMed  Google Scholar 

  • Negro J, Torres M, Godoy J (2001) RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol Cons 98:19–24

    CrossRef  Google Scholar 

  • Nichols CR (1991) A comparison of the reproductive and behavioural differences in feral and domestic Japanese quail. University of British Columbia

    Google Scholar 

  • Oliveira R, Godinho R, Randi E, Ferrand N, Alves PC (2008) Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conserv Genet 9:1–11

    CrossRef  Google Scholar 

  • Olsson M et al (2011) A novel unstable duplication upstream of HAS2 predisposes to a breed-defining skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs. PLoS Genet 7:e1001332

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierpaoli M et al (2003) Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol Ecol 12:2585–2598

    CrossRef  CAS  PubMed  Google Scholar 

  • Price EO (2002) Animal domestication and behaviour. CABI Publishing, Wallingford

    CrossRef  Google Scholar 

  • Price EO, King JA (1968) Domestication and adaptation. In: Hafez ESE (ed) Adaptation of domestic animals. Lea and Febiger, Philadelphia, pp 34–45

    Google Scholar 

  • Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293

    CrossRef  PubMed  Google Scholar 

  • Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol 47:449–462

    CrossRef  CAS  PubMed  Google Scholar 

  • Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:29–43

    CrossRef  Google Scholar 

  • Randi E, Pierpaoli M, Beaumont M, Ragni B, Sforzi A (2001) Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. Mol Biol Evol 18:1679–1693

    CrossRef  CAS  PubMed  Google Scholar 

  • Ren J et al (2011) A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLoS Genet 7:e1002043

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    CrossRef  Google Scholar 

  • Rose KM, Wodzicka-Tomaszewska M, Cumming R (1985) Agonistic behaviour, responses to a novel object and some aspects of maintenance behaviour in feral-strain and domestic chickens. Appl Anim Behav Sci 13:283–294

    CrossRef  Google Scholar 

  • Roy MS, Geffen E, Smith D, Ostrander EA, Wayne RK (1994) Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol Biol Evol 11:553–570

    CAS  PubMed  Google Scholar 

  • Rubin C-J et al (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587–591

    CrossRef  CAS  PubMed  Google Scholar 

  • Schmutz S, Berryere T (2007) Genes affecting coat colour and pattern in domestic dogs: a review. Anim Genet 38:539–549

    CrossRef  CAS  PubMed  Google Scholar 

  • Schultz W (1969) Zur Kenntnis des Hallstrom-hunds (Canis hallstromi, 1957). Zool Anz 183:47–72

    Google Scholar 

  • Statham M, Middleton M (1987) Feral pigs on Flinders Island. In: Papers and proceedings of the Royal Society of Tasmania, pp 121–124

    Google Scholar 

  • Thomson VA et al (2014) Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proc Natl Acad Sci 111:4826–4831

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Laere A-S et al (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    CrossRef  PubMed  CAS  Google Scholar 

  • Verardi A, Lucchini V, Randi E (2006) Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Mol Ecol 15:2845–2855

    CrossRef  PubMed  CAS  Google Scholar 

  • Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc Natl Acad Sci 108:1815–1820. https://doi.org/10.1073/pnas.1015876108

    CrossRef  PubMed  Google Scholar 

  • Wright D et al (2010) The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage. Mol Ecol 19:5140–5156

    CrossRef  PubMed  CAS  Google Scholar 

  • Wright D et al (2012) Onset of sexual maturity in female chickens is genetically linked to loci associated with fecundity and a sexual ornament. Reprod Domest Anim 47:31–36. https://doi.org/10.1111/j.1439-0531.2011.01963.x

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

The research was carried out within the framework of the Linköping University Neuro-network. The project was supported by grants from the Swedish Research Council (VR), the European Research Council (advanced research grant GENEWELL 322206, consolidator grant FERALGEN 772874) and the National Science Foundation under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Henriksen, R., Gering, E., Wright, D. (2018). Feralisation—The Understudied Counterpoint to Domestication. In: Pontarotti, P. (eds) Origin and Evolution of Biodiversity. Springer, Cham. https://doi.org/10.1007/978-3-319-95954-2_11

Download citation