Skip to main content

Transcranial Direct Current Stimulation Modulation of Neurophysiological Functional Outcomes: Neurophysiological Principles and Rationale

  • Chapter
  • First Online:
Practical Guide to Transcranial Direct Current Stimulation

Abstract

For exploring physiological effects of tDCS in humans, numerous tools are available, spanning from measures allowing to monitor regional alterations of brain excitability and activity, to network alterations including modulation of remote areas. The most important tools to explore physiological effects in humans include transcranial magnetic stimulation, evoked potential measures, magnetic resonance tomography, electroencephalography and positron emission tomography. Although the main bulk of studies during the last years have explored tDCS effects on motor cortex excitability and activity, research has extended to other cortical areas, including association cortices, and interaction between remote cortices. This chapter will give a state of the art overview about regional physiological effects of tDCS on motor, sensory and multimodal brain areas, as well as about network effects of tDCS. Overall, the concept of tDCS modulation of functional outcomes in health and disease build on evidence suggesting that (i) the human neural system can undergo neuroplastic changes that may be associated with altered functional outcomes or pathological conditions, (ii) tDCS can induce neuroplasticity in the means of enduring alterations of neural activity and connectivity and thus can be used to attempt prevention or reversal of maladaptive neuroplastic changes or to enhance adaptive neuroplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accornero, N., Voti, P. L., La Riccia, M., & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research, 178(2), 261–266.

    PubMed  Google Scholar 

  • Albert, J., López-Martín, S., & Carretié, L. (2010). Emotional context modulates response inhibition: Neural and behavioral data. NeuroImage, 49(1), 914–921.

    Article  PubMed  Google Scholar 

  • Antal, A., Brepohl, N., Poreisz, C., Boros, K., Csifcsak, G., & Paulus, W. (2008). Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. The Clinical Journal of Pain, 24(1), 56–63.

    Article  PubMed  Google Scholar 

  • Antal, A., Chaieb, L., Moliadze, V., Monte-Silva, K., Poreisz, C., Thirugnanasambandam, N., & Paulus, W. (2010). Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimulation, 3(4), 230–237.

    Article  PubMed  Google Scholar 

  • Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003a). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Experimental Brain Research, 150(3), 375–378.

    Article  PubMed  Google Scholar 

  • Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003b). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41(13), 1802–1807.

    Article  PubMed  Google Scholar 

  • Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004a). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 2888–2892.

    Article  PubMed  Google Scholar 

  • Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P., & Paulus, W. (2004b). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16(4), 521–527.

    PubMed  Google Scholar 

  • Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12(16), 3553–3555.

    Article  CAS  PubMed  Google Scholar 

  • Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., & Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage, 55(2), 590–596.

    Article  PubMed  Google Scholar 

  • Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26(9), 2687–2691.

    Article  PubMed  Google Scholar 

  • Ardolino, G., Bossi, B., Barbieri, S., & Priori, A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology, 568(2), 653–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azanon, E., & Haggard, P. (2009). Somatosensory processing and the body representation. Cortex, 45(9), 1078–1084.

    Article  PubMed  Google Scholar 

  • Barron, H. C., Vogels, T. P., Emir, U. E., Makin, T. R., O’Shea, J., Clare, S., … Behrens, T. E. J. (2016). Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron, 90, 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45(2), 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Benninger, D. H., Lomarev, M., Lopez, G., Wassermann, E. M., Li, X., Considine, E., & Hallett, M. (2010). Transcranial direct current stimulation for the treatment of Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(10), 1105–1111.

    Article  Google Scholar 

  • Bolzoni, F., Pettersson, L. G., & Jankowska, E. (2013). Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. The Journal of Physiology, 591(13), 3381–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boros, K., Poreisz, C., Münchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. European Journal of Neuroscience, 27(5), 1292–1300.

    Article  PubMed  Google Scholar 

  • Bradnam, L. V., Stinear, C. M., & Byblow, W. D. (2011). Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb. Journal of Neurophysiology, 105(5), 2582–2589.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M. A., Duprat, R., Rabijns, M., … Baeken, C. (2017). Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population. Clinical EEG and Neuroscience, 48(3), 176–188.

    Article  PubMed  Google Scholar 

  • Chen, J. C., Hämmerer, D., D’Ostilio, K., Casula, E. P., Marshall, L., Tsai, C. H., … Edwards, M. J. (2014a). Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: An event related potential study. The Journal of Physiology, 592(4), 745–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J. C., Hämmerer, D., Strigaro, G., Liou, L. M., Tsai, C. H., Rothwell, J. C., & Edwards, M. J. (2014b). Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clinical Neurophysiology, 125(3), 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Chib, V. S., Yun, K., Takahashi, H., & Shimojo, S. (2013). Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Translational Psychiatry, 3, e268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clithero, J. A., & Rangel, A. (2013). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9(9), 1289–1302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conti, C. L., Moscon, J. A., Fregni, F., Nitsche, M. A., & Nakamura-Palacios, E. M. (2014). Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. The International Journal of Neuropsychopharmacology, 17(9), 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • Curio, G. (2000). Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. Journal of Clinical Neurophysiology, 17(4), 377–396. 11012041.

    Article  CAS  PubMed  Google Scholar 

  • Curio, G., Mackert, B. M., Burghoff, M., Koetitz, R., Abraham-Fuchs, K., & Härer, W. (1994). Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalography and Clinical Neurophysiology, 91(6), 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Curio, G., Mackert, B. M., Burghoff, M., Neumann, J., Nolte, G., Scherg, M., & Marx, P. (1997). Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neuroscience Letters, 234(2), 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieckhöfer, A., Waberski, T. D., Nitsche, M., Paulus, W., Buchner, H., & Gobbelé, R. (2006). Transcranial direct current stimulation applied over the somatosensory cortex–differential effect on low and high frequency SEPs. Clinical Neurophysiology, 117(10), 2221–2227.

    Article  PubMed  Google Scholar 

  • Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 74, 266–275.

    Article  PubMed  Google Scholar 

  • Faehling, F., & Plewnia, C. (2016). Controlling the emotional bias: Performance, late positive potentials, and the effect of anodal transcranial direct current stimulation (tDCS). Frontiers in Cellular Neuroscience, 10, 159. PubMed PMID: 27378856.

    Google Scholar 

  • Fenton, B. W., Palmieri, P. A., Boggio, P., Fanning, J., & Fregni, F. (2009). A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimulation, 2(2), 103–107.

    Article  PubMed  Google Scholar 

  • Fricke, K., Seeber, A. A., Thirugnanasambandam, N., Paulus, W., Nitsche, M. A., & Rothwell, J. C. (2011). Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 105(3), 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  • Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grueschow, M., Polania, R., Hare, T. A., & Ruff, C. C. (2015). Automatic versus choice-dependent value representations in the human brain. Neuron, 85(4), 874–885.

    Article  CAS  PubMed  Google Scholar 

  • Grundey, J., Thirugnanasambandam, N., Kaminsky, K., Drees, A., Skwirba, A. C., Lang, N., … Nitsche, M. A. (2012). Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. The Journal of Neuroscience, 32(12), 4156–4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundmann, L., Rolke, R., Nitsche, M. A., Pavlakovic, G., Happe, S., Treede, R. D., … Bachmann, C. G. (2011). Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimulation, 4(4), 253–260.

    Article  PubMed  Google Scholar 

  • Haider, B., & Mccormick, D. A. (2009). Rapid neocortical dynamics: Cellular and network mechanisms. Neuron, 62, 171–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, A., Nitsche, M. A., Rein, B., Schneider-Axmann, T., Guse, B., Gruber, O., … Wobrock, T. (2011). Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behavioural Brain Research, 224(1), 15–22.

    Article  PubMed  Google Scholar 

  • Huttunen, J., Komssi, S., & Lauronen, L. (2006). Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: An MEG study. NeuroImage, 32(3), 1024–1031.

    Article  PubMed  Google Scholar 

  • Iezzi, E., Suppa, A., Conte, A., Li Voti, P., Bologna, M., & Berardelli, A. (2011). Short-term and long-term plasticity interaction in human primary motor cortex. European Journal of Neuroscience, 33(10), 1908–1915.

    Article  PubMed  Google Scholar 

  • Impey, D., de la Salle, S., & Knott, V. (2016). Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing. Brain and Cognition, 105, 46–54. PMID: 27054908.

    Article  PubMed  Google Scholar 

  • Impey, D., & Knott, V. (2015). Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: A pilot study. Journal of Neural Transmission, 122(8), 1175–1185.

    Article  PubMed  Google Scholar 

  • Jang, S. H., Ahn, S. H., Byun, W. M., Kim, C. S., Lee, M. Y., & Kwon, Y. H. (2009). The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: An fMRI study. Neuroscience Letters, 460(2), 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, S., Mistry, S., Singh, S., Rothwell, J., & Hamdy, S. (2009). Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. American Journal of Physiology. Gastrointestinal and Liver Physiology, 297(6), G1035–G1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery, D. T., Norton, J. A., Roy, F. D., & Gorassini, M. A. (2007). Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental Brain Research, 182(2), 281–287.

    Article  PubMed  Google Scholar 

  • Kasashima, Y., Fujiwara, T., Matsushika, Y., Tsuji, T., Hase, K., Ushiyama, J., … Liu, M. (2012). Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Experimental Brain Research, 221(3), 263–268.

    Article  PubMed  Google Scholar 

  • Kasuga, S., Matsushika, Y., Kasashima-Shindo, Y., Kamatani, D., Fujiwara, T., Liu, M., & Ushiba, J. (2015). Transcranial direct current stimulation enhances mu rhythm desynchronization during motor imagery that depends on handedness. Laterality: Asymmetries of Body, Brain and Cognition, 20(4), 453–468.

    Article  Google Scholar 

  • Kawamura, T., Nakasato, N., Seki, K., Kanno, A., Fujita, S., Fujiwara, S., & Yoshimoto, T. (1996). Neuromagnetic evidence of pre-and post-central cortical sources of somatosensory evoked responses. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 100(1), 44–50.

    Article  CAS  Google Scholar 

  • Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience, 31, 15284–15293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., & Bikson, M. (2013). Dosage considerations for transcranial direct current stimulation in children: A computational modeling study. PLoS One, 8(9), e76112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C. R., Kim, D. Y., Kim, L. S., Chun, M. H., Kim, S. J., & Park, C. H. (2012). Modulation of cortical activity after anodal transcranial direct current stimulation of the lower limb motor cortex: A functional MRI study. Brain Stimulation, 5(4), 462–467.

    Article  PubMed  Google Scholar 

  • Kirimoto, H., Ogata, K., Onishi, H., Oyama, M., Goto, Y., & Tobimatsu, S. (2011). Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clinical Neurophysiology, 122(4), 777–783.

    Article  PubMed  Google Scholar 

  • Kojima, S., Onishi, H., Miyaguchi, S., Kotan, S., Sugawara, K., Kirimoto, H., & Tamaki, H. (2015). Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition. Neuroreport, 26(11), 634–637.

    Article  PubMed  Google Scholar 

  • Krajbich, I., & Dean, M. (2015). How can neuroscience inform economics? Current Opinion Behavioral Science, 5, 51–57.

    Article  Google Scholar 

  • Krishnan, C., Ranganathan, R., Kantak, S. S., Dhaher, Y. Y., & Rymer, W. Z. (2014). Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimulation, 7(3), 443–450.

    Article  PubMed  Google Scholar 

  • Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648.

    Article  PubMed  Google Scholar 

  • Kuo, H. I., Paulus, W., Batsikadze, G., Jamil, A., Kuo, M. F., & Nitsche, M. A. (2016). Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity. Neuropsychopharmacology, 41(5), 1223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo, M. F., Paulus, W., & Nitsche, M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cerebral Cortex, 18(3), 648–651.

    Article  PubMed  Google Scholar 

  • Kwon, Y. H., & Jang, S. H. (2011). The enhanced cortical activation induced by transcranial direct current stimulation during hand movements. Neuroscience Letters, 492(2), 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, Y. H., Kang, K. W., Son, S. M., & Lee, N. K. (2015). Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty? Neural Regeneration Research, 10(3), 463–466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, Y. H., Ko, M. H., Ahn, S. H., Kim, Y. H., Song, J. C., Lee, C. H., … Jang, S. H. (2008). Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neuroscience Letters, 435(1), 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Labruna, L., Jamil, A., Fresnoza, S., Batsikadze, G., Kuo, M. F., Vanderschelden, B., … Nitsche, M. A. (2016). Efficacy of anodal transcranial direct current stimulation is related to sensitivity to transcranial magnetic stimulation. Brain Stimulation, 9(1), 8–15.

    Article  PubMed  Google Scholar 

  • Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., … Frackowiak, R. S. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22(2), 495–504.

    Article  PubMed  Google Scholar 

  • Lapenta, O. M., Di Sierve, K., de Macedo, E. C., Fregni, F., & Boggio, P. S. (2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite, 83, 42–48.

    Article  PubMed  Google Scholar 

  • Lapenta, O. M., Minati, L., Fregni, F., & Boggio, P. S. (2013). Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation. Frontiers in human neuroscience, 7, 256.

    Google Scholar 

  • Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238–2247.

    Article  PubMed  Google Scholar 

  • Lisman, J. E. (2001). Three Ca2+ levels affect plasticity differently: The LTP zone, the LTD zone and no man’s land. The Journal of Physiology, 532(2), 285–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Alonso, V., Fernández-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342–2347.

    Article  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Mathys, C., Loui, P., Zheng, X., & Schlaug, G. (2010). Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Frontiers in Psychology, 1, 193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, J., Fujiwara, T., Takahashi, O., Liu, M., Kimura, A., & Ushiba, J. (2010). Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. Journal of Neuroengineering and Rehabilitation, 7(1), 1.

    Article  Google Scholar 

  • Matsunaga, K., Nitsche, M. A., Tsuji, S., & Rothwell, J. C. (2004). Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology, 115(2), 456–460.

    Article  PubMed  Google Scholar 

  • Mauguiere, F. (1999). Somatosensory evoked potentials: Normal responses, abnormal waveforms and clinical applications in neurological diseases. In E. Niedermeyer & F. Lopes Da Silva (Eds.), Electrocephalography: Basic principles,clinical applications and related fields (pp. 1014–1058). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Mayberg, H. S., Lozano, A. M., Voon, V., Mcneely, H. E., Seminowicz, D., Hamani, C., … Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Merritt, K., McGuire, P., & Egerton, A. (2013). Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis. Frontiers in Psychiatry, 4, 151.

    Google Scholar 

  • Mccambridge, A. B., Stinear, J. W., & Byblow, W. D. (2015). ‘I-wave’ recruitment determines response to tDCS in the upper limb, but only so far. Brain Stimulation, 8(6), 1124–1129.

    Article  PubMed  Google Scholar 

  • Miyamoto, S., Miyake, N., Jarskog, L. F., Fleischhacker, W. W., & Lieberman, J. A. (2012). Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents. Molecular Psychiatry, 17, 1206–1227.

    Article  CAS  PubMed  Google Scholar 

  • Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432.

    Article  PubMed  Google Scholar 

  • Monte-Silva, K., Kuo, M. F., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). Journal of Neurophysiology, 103(4), 1735–1740.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Doemkes, S., Karakoese, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109–3117.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(1), 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche, M. A., Jaussi, W., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2004a). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology, 29(8), 1573–1578.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., Kuo, M. F., Karrasch, R., Wächter, B., Liebetanz, D., & Paulus, W. (2009). Serotonin affects transcranial direct current–induced neuroplasticity in humans. Biological Psychiatry, 66(5), 503–508.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., Lampe, C., Antal, A., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. European Journal of Neuroscience, 23(6), 1651–1657.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Liebetanz, D., Schlitterlau, A., Henschke, U., Fricke, K., Frommann, K., … Tergau, F. (2004b). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. European Journal of Neuroscience, 19(10), 2720–2726.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003b). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114(4), 600–604.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003c). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., … Paulus, W. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of Physiology, 568(1), 291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, 11, 535–537.

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari, M. C., Brignani, D., & Miniussi, C. (2013). Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach. NeuroImage, 83, 569–580.

    Article  PubMed  Google Scholar 

  • Peña-Gómez, C., Sala-Lonch, R., Junqué, C., Clemente, I. C., Vidal, D., Bargalló, N., … Bartrés-Faz, D. (2012). Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimulation, 5, 252–263.

    Article  PubMed  Google Scholar 

  • Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and Clinical Neurophysiology, 60(5), 423–434.

    Article  CAS  PubMed  Google Scholar 

  • Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron, 82(3), 709–720.

    Article  PubMed  CAS  Google Scholar 

  • Polanía, R., Moisa, M., Opitz, A., Grueschow, M., & Ruff, C. C. (2015). The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature Communications, 6, 8090.

    Article  PubMed  CAS  Google Scholar 

  • Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012a). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314–1318.

    Article  PubMed  CAS  Google Scholar 

  • Polanía, R., Nitsche, M. A., & Paulus, W. (2011a). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human Brain Mapping, 32(8), 1236–1249.

    Article  PubMed  Google Scholar 

  • Polanía, R., Paulus, W., Antal, A., & Nitsche, M. A. (2011b). Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. NeuroImage, 54(3), 2287–2296.

    Article  PubMed  Google Scholar 

  • Polanía, R., Paulus, W., & Nitsche, M. A. (2012b). Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns. Journal of Cognitive Neuroscience, 24(2), 304–314.

    Article  PubMed  Google Scholar 

  • Polanía, R., Paulus, W., & Nitsche, M. A. (2012c). Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One, 7(1), e30971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polanía, R., Paulus, W., & Nitsche, M. A. (2012d). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Human Brain Mapping, 33(10), 2499–2508.

    Article  PubMed  Google Scholar 

  • Ragert, P., Becker, M., Tegenthoff, M., Pleger, B., & Dinse, H. R. (2004a). Sustained increase of somatosensory cortex excitability by 5 Hz repetitive transcranial magnetic stimulation studied by paired median nerve stimulation in humans. Neuroscience Letters, 356(2), 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Ragert, P., Franzkowiak, S., Schwenkreis, P., Tegenthoff, M., & Dinse, H. R. (2008a). Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex. Experimental Brain Research, 184(1), 1–11.

    Article  PubMed  Google Scholar 

  • Ragert, P., Schmidt, A., Altenmuèller, E., & Dinse, H. R. (2004b). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19(2), 473–478.

    Article  PubMed  Google Scholar 

  • Ragert, P., Vandermeeren, Y., Camus, M., & Cohen, L. G. (2008b). Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 119(4), 805–811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raja, B. A., Polanía, R., Hare, T. A., & Ruff, C. C. (2015). Transcranial stimulation over Frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration–exploitation trade-offs. The Journal of Neuroscience, 35(43), 14544–14556.

    Article  CAS  Google Scholar 

  • Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9(7), 545–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262–270.

    Article  CAS  PubMed  Google Scholar 

  • Ray Li, C.-S., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. The Journal of Neuroscience, 26, 186–192.

    Article  CAS  PubMed Central  Google Scholar 

  • Rehmann, R., Sczesny-Kaiser, M., Lenz, M., Gucia, T., Schliesing, A., Schwenkreis, P., … Höffken, O. (2016). Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans. Frontiers in Human Neuroscience, 10, 208.

    Google Scholar 

  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590–1595.

    Article  CAS  Google Scholar 

  • Rivera-Urbina, G. N., Batsikadze, G., Molero-Chamizo, A., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2015). Parietal transcranial direct current stimulation modulates primary motor cortex excitability. European Journal of Neuroscience, 41(6), 845–855.

    Article  PubMed  Google Scholar 

  • Rogalewski, A., Breitenstein, C., Nitsche, M. A., Paulus, W., & Knecht, S. (2004). Transcranial direct current stimulation disrupts tactile perception. European Journal of Neuroscience, 20(1), 313–316.

    Article  PubMed  Google Scholar 

  • Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS–EEG study. IEEE Transactions on Biomedical Engineering, 61(7), 1967–1978.

    Article  PubMed  Google Scholar 

  • Ruff, C. C., Ugazio, G., & Fehr, E. (2013). Changing social norm compliance with noninvasive brain stimulation. Science, 342, 482–484.

    Article  CAS  PubMed  Google Scholar 

  • Saiote, C., Polanía, R., Rosenberger, K., Paulus, W., & Antal, A. (2013). High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS One, 8(3), e59669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanes, J. N. (2000). Motor cortex rules for learning and memory. Current Biology, 10, R495–R497.

    Article  CAS  PubMed  Google Scholar 

  • Schade, S., Moliadze, V., Paulus, W., & Antal, A. (2012). Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: A pilot study. Restorative Neurology and Neuroscience, 30(3), 191–198.

    PubMed  Google Scholar 

  • Sczesny-Kaiser, M., Beckhaus, K., Dinse, H. R., Schwenkreis, P., Tegenthoff, M., & Höffken, O. (2016). Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—A pilot study. Frontiers in Behavioral Neuroscience, 10, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, B., Nguyen, T. T., & Madhavan, S. (2013). Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimulation, 6(6), 966–968.

    Article  PubMed  Google Scholar 

  • Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Song, S., Sandrini, M., & Cohen, L. G. (2011). Modifying somatosensory processing with non-invasive brain stimulation. Restorative Neurology and Neuroscience, 29(6), 427–437.

    PubMed  PubMed Central  Google Scholar 

  • Spitzer, M., Fischbacher, U., Herrnberger, B., Grön, G., & Fehr, E. (2007). The neural signature of social norm compliance. Neuron, 56, 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., … Near, J. (2014). Local GABA concentration is related to network-level resting functional connectivity. eLife, 3, e01465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29(16), 5202–5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara, K., Onishi, H., Yamashiro, K., Kojima, S., Miyaguchi, S., Kirimoto, H., … Kameyama, S. (2015). The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clinical Neurophysiology, 126(1), 60–67.

    Article  PubMed  Google Scholar 

  • Tanaka, S., Hanakawa, T., Honda, M., & Watanabe, K. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Experimental Brain Research, 196(3), 459–465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirugnanasambandam, N., Grundey, J., Adam, K., Drees, A., Skwirba, A. C., Lang, N., … Nitsche, M. A. (2011). Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology, 36(4), 879–886.

    Article  CAS  PubMed  Google Scholar 

  • Trepel, C., & Racine, R. J. (2000). GABAergic modulation of neocortical long-term potentiation in the freely moving rat. Synapse, 35(2), 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris, M., Costantini, M., & Haggard, P. (2008). The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia, 46(12), 3014–3018.

    Article  PubMed  Google Scholar 

  • Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.

    Article  PubMed  CAS  Google Scholar 

  • Vines, B. W., Schnider, N. M., & Schlaug, G. (2006). Testing for causality with transcranial direct current stimulation: Pitch memory and the left supramarginal gyrus. Neuroreport, 17(10), 1047–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Yu, C., Chen, H., Qin, W., He, Y., Fan, F., … Woodward, T. S. (2010). Dynamic functional reorganization of the motor execution network after stroke. Brain, 133(4), 1224–1238.

    Article  PubMed  Google Scholar 

  • Wang, Y., Hao, Y., Zhou, J., Fried, P. J., Wang, X., Zhang, J., … Manor, B. (2015). Direct current stimulation over the human sensorimotor cortex modulates the brain’s hemodynamic response to tactile stimulation. European Journal of Neuroscience, 42(3), 1933–1940.

    Article  PubMed  Google Scholar 

  • Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475.

    Article  PubMed  Google Scholar 

  • Williams, S. M., & Goldman-Rakic, P. S. (1991). Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cerebral Cortex, 3, 199–222.

    Article  Google Scholar 

  • Yang, B., Yang, S., Zhao, L., Yin, L., Liu, X., & An, S. (2009). Event-related potentials in a go/Nogo task of abnormal response inhibition in heroin addicts. Science in China Series C: Life Sciences, 52(8), 780–788.

    PubMed  Google Scholar 

  • Yu, J., Tseng, P., Hung, D. L., Wu, S.-W., & Juan, C.-H. (2015). Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity. Human Brain Mapping, 36, 4004–4015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaehle, T., Beretta, M., Jäncke, L., Herrmann, C. S., & Sandmann, P. (2011). Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Experimental Brain Research, 215(2), 135–140.

    Article  PubMed  Google Scholar 

  • Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58(1), 26–33.

    Article  PubMed  Google Scholar 

  • Zhou, Y., Liang, M., Jiang, T., Tian, L., Liu, Y., Liu, Z., … Kuang, F. (2007). Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neuroscience Letters, 417(3), 297–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Polania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knotkova, H., Nitsche, M.A., Polania, R. (2019). Transcranial Direct Current Stimulation Modulation of Neurophysiological Functional Outcomes: Neurophysiological Principles and Rationale. In: Knotkova, H., Nitsche, M., Bikson, M., Woods, A. (eds) Practical Guide to Transcranial Direct Current Stimulation. Springer, Cham. https://doi.org/10.1007/978-3-319-95948-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95948-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95947-4

  • Online ISBN: 978-3-319-95948-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics