Skip to main content

Optimal Chiller Loading by MOEA/D for Reducing Energy Consumption

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

Abstract

A modified multi-objective evolutionary algorithm based on decomposition (MOEA/D) is used to solve the optimal chiller loading (OCL) problem. In a multi-chiller system, the chillers are usually partially loaded for most of the running time. If the chillers are unreasonably managed, their consumption noticeably increases. To reduce power consumption, the partial load ratio (PLR) of each chiller must be adjusted. The system must meet the system cooling load (CL), so, it is a constrained optimization problem. This study uses a multi-objective method to solve the constrained optimization. The constraint condition is changed to a new objective, so, the problem can be solved as a multi-objective problem. Comparison with the experimental results in the literature proved the effectiveness and performance of the modified algorithm, which can be fully applied in air conditioning system operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, Y.C., Lin, F.A., Lin, C.H.: Optimal chiller sequencing by branch and bound method for saving energy. Energy Convers. Manage. 46(13–14), 2158–2172 (2005)

    Article  Google Scholar 

  2. Chang, Y.C.: A novel energy conservation method—optimal chiller loading. Electr. Pow. Syst. Res. 69(2), 221–226 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chang, Y.C.: Genetic algorithm based optimal chiller loading for energy conservation. Appl. Therm. Eng. 25(17–18), 2800–2815 (2005)

    Article  Google Scholar 

  4. Salari, E., Askarzadeh, A.: A new solution for loading optimization of multi-chiller systems by general algebraic modeling system. Appl. Therm. Eng. 84(4), 429–436 (2015)

    Article  Google Scholar 

  5. Jeyadevi, S., Baskar, S., Babulal, C.K.: Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Int. J. Elec. Power. 33(2), 219–228 (2011)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolut. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  8. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  9. Li, H., Landa-Silva, D.: An adaptive evolutionary multi-objective approach based on simulated annealing. Evol. Comput. 19(4), 561–595 (2014)

    Article  Google Scholar 

  10. Zhao, F., Chen, Z., Zhang, C.: A modified MOEA/D with adaptive mutation mechanism for multi-objective job shop scheduling problem. J. Comput. Inform. Syst. 11(8), 2833–2840 (2015)

    Google Scholar 

  11. Souza, M.Z.D., Pozo, A.T.R.: A GPU implementation of MOEA/D-ACO for the multiobjective traveling salesman problem. IEEE Intell. Syst., 324–329 (2014)

    Google Scholar 

  12. Lu, H., Zhu, Z., Wang, X., Yin, L.: A variable neighborhood MOEA/D for multiobjective test task scheduling problem. Math. Probl. Eeg. 2014(3), 1–14 (2014)

    Google Scholar 

  13. Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Appl. Soft Comput. 11(6), 4117–4134 (2011)

    Article  Google Scholar 

  14. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  15. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation, pp. 203–208. IEEE Press (2009)

    Google Scholar 

  16. Lin, S., Lin, F., Chen, H., Zeng, W.: A MOEA/D-based multi-objective optimization algorithm for remote medical. Neurocomputing 220, 5–16 (2016)

    Article  Google Scholar 

  17. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2017)

    Article  Google Scholar 

  18. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

  19. Lu, H., Zhang, M., Fei, Z., Mao, K.: Multi-objective energy consumption scheduling based on decomposition algorithm with the non-uniform weight vector. Appl. Soft Comput. 39(C), 223–239 (2016)

    Article  Google Scholar 

  20. Zhang, J., Tang, Q., Li, P., Deng, D., Chen, Y.: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl. Soft Comput. 47(C), 494–514 (2016)

    Article  Google Scholar 

  21. Meng, Z., Shen, R., Jiang, M.: A penalty function algorithm with objective parameters and constraint penalty parameter for multi-objective programming. Am. J. Oper. Res. 4(6), 331–339 (2014)

    Article  Google Scholar 

  22. Chekir, N., Bellagi, A.: Performance improvement of a Butane/Octane absorption chiller. Energy 36(10), 6278–6284 (2011)

    Article  Google Scholar 

  23. Li, J.Q., Sang, H.Y., Han, Y.Y., Wang, C.G., Gao, K.Z.: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. J. Clean. Prod. 181, 584–598 (2018)

    Article  Google Scholar 

  24. Zheng, Z.X., Li, J.Q.: Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption. Energy Buildings 161, 80–88 (2018)

    Article  Google Scholar 

  25. Duan, P.Y., Li, J.Q., Wang, Y., Sang, H.Y., Jia, B.X.: Solving chiller loading optimization problems using an improved teaching-learning-based optimization algorithm. Optim. Contr. Appl. Met. 39(1), 65–77 (2018)

    Article  Google Scholar 

  26. Li, J.Q., Pan, Q.K., Tasgetiren, M.F.: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities. Appl. Math. Model. 38(3), 1111–1132 (2014)

    Article  MathSciNet  Google Scholar 

  27. Li, J.Q., Pan, Q.K.: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities. Int. J. Prod. Econ. 145(1), 4–17 (2013)

    Article  Google Scholar 

  28. Li, J.Q., Pan, Q.K., Mao, K.: A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems. Eng. Appl. Artif. Intell. 37, 279–292 (2015)

    Article  Google Scholar 

  29. Li, J.Q., Pan, Q.K., Gao, K.Z.: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int. J. Adv. Manuf. Tech. 55(9–12), 1159–1169 (2011)

    Article  Google Scholar 

  30. Li, J.Q., Pan, Q.K., Mao, K.: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems. IEEE Trans. Autom. Sci. Eng. 13(2), 932–949 (2016)

    Article  Google Scholar 

  31. Li, J.Q., Pan, Q.K., Chen, J.: A hybrid pareto-based local search algorithm for multi-objective flexible job shop scheduling problems. Int. J. Prod. Res. 50(4), 1063–1078 (2012)

    Article  Google Scholar 

  32. Li, J.Q., Pan, Q.K., Suganthan, P.N., Chua, T.J.: A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. Int. J. Adv. Manuf. Tech. 59(4), 647–662 (2011)

    Google Scholar 

  33. Li, J.Q., Pan, Y.X.: A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem. Int. J. Adv. Manuf. Tech. 66(1–4), 583–596 (2013)

    Article  Google Scholar 

  34. Li, J.Q., Pan, Q.K., Duan, P.Y.: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans. Cybern. 46(6), 1311–1324 (2016)

    Article  Google Scholar 

  35. Li, J.Q., Pan, Q.K.: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf. Sci. 316(20), 487–502 (2015)

    Article  Google Scholar 

  36. Li, J.Q., Pan, Q.K., Xie, S.X.: An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems. Appl. Math. Comput. 218(18), 9353–9371 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Li, J.Q., Pan, Q.K., Liang, Y.C.: An effective hybrid tabu search algorithm for multi-objective flexible job shop scheduling problems. Comput. Ind. Eng. 59(4), 647–662 (2010)

    Article  Google Scholar 

  38. Li, J.Q., Pan, Q.K., Mao, K., Suganthan, P.N.: Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowl.-Based Syst. 72(12), 28–36 (2014)

    Article  Google Scholar 

  39. Li, J.Q., Pan, Q.K.: Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity. Appl. Soft Comput. 12(9), 2896–2912 (2012)

    Article  Google Scholar 

  40. Li, J.Q., Pan, Q.K., Wang, F.T.: A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Appl. Soft Comput. 24, 63–77 (2014)

    Article  Google Scholar 

  41. Li, J.Q., Pan, Q.K., Xie, S.X., Wang, S.: A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. Int. J. Comput. Commun. Control 6(2), 267–277 (2011)

    Article  Google Scholar 

  42. Li, J.Q., Pan, Q.K., Xie, S.X.: A hybrid variable neighborhood search algorithm for solving multi-objective flexible job shop problems. ComSIS Comput. Sci. Inf. Syst. 7(4), 907–930 (2010)

    Article  Google Scholar 

  43. Li, J.Q., Wang, J.D., Pan, Q.K., Duan, P.Y., Sang, H.Y., Gao, K.Z., Xue, Y.: A hybrid artificial bee colony for optimizing a reverse logistics network system. Soft Comput. 21(20), 6001–6018 (2017)

    Article  Google Scholar 

  44. Zhang, P., Liu, H., Ding, Y.H.: Dynamic bee colony algorithm based on multi-species co-evolution. Appl. Intell. 40, 427–440 (2014)

    Article  Google Scholar 

  45. Hu, C.Y., Liu, H., Zhang, P.: Cooperative co-evolutionary artificial bee colony algorithm based on hierarchical communication model. Chin. J. Elec. 25, 570–576 (2016)

    Article  Google Scholar 

  46. Liu, Y., Jiao, Y.C., Zhang, Y.M., Tan, Y.Y.: Synthesis of phase-only reconfigurable linear arrays using multiobjective invasive weed optimization based on decomposition. Int. J. Antenn. Propag. 2014 (2014)

    Google Scholar 

  47. Zheng, X.W., Lu, D.J., Wang, X.G., Liu, H.: A cooperative coevolutionary biogeography-based optimizer. Appl. Intell. 43, 95–111 (2015)

    Article  Google Scholar 

  48. Liu, H., Zhang, P., Hu, B., Moore, P.: A novel approach to task assignment in a cooperative multi-agent design system. Appl. Intell. 43, 162–175 (2015)

    Article  Google Scholar 

  49. Zhang, Z.J., Liu, H.: Social recommendation model combining trust propagation and sequential behaviors. Appl. Intell. 43, 695–706 (2015)

    Article  Google Scholar 

  50. Wang, J.L., Gong, B., Liu, H., Li, S.H.: Model and algorithm for heterogeneous scheduling integrated with energy-efficiency awareness. T.I. Meas. Control. 38, 452–462 (2016)

    Article  Google Scholar 

  51. Wang, J.L., Gong, B., Liu, H., Li, S.H.: Multidisciplinary approaches to artificial swarm intelligence for heterogeneous computing and cloud scheduling. Appl. Intell. 43, 662–675 (2015)

    Article  Google Scholar 

  52. Wang, J.L., Gong, B., Liu, H., Li, S.H., Yi, J.: Heterogeneous computing and grid scheduling with parallel biologically inspired hybrid heuristics. T.I. Meas. Control 36, 805–814 (2014)

    Article  Google Scholar 

  53. Bai, J., Liu, H.: Multi-objective artificial bee algorithm based on decomposition by PBI method. Appl. Intell. 45(4), 976–991 (2016)

    Article  Google Scholar 

  54. Dong, X., Zhang, H., Sun, J., Wan, W.: A two-stage learning approach to face recognition. J. Vis. Commun. Image R. 43, 21–29 (2017)

    Article  Google Scholar 

  55. Jia, W., Zhao, D., Zheng, Y., Hou, S.: A novel optimized GA–Elman neural network algorithm. Neural Comput. Appl. 6, 1–11 (2017)

    Google Scholar 

  56. Zheng, X., Yu, X., Yan, L., Liu, H.: An enhanced multi-objective group search optimizer based on multi-producer and crossover operator. J. Inf. Sci. Eng. 37(1), 33–50 (2017)

    MathSciNet  Google Scholar 

  57. Liu, H., Chen, Z.H., Zheng, X.W., Hu, B., Lu, D.J., Chen, Z.H.: Energy-efficient virtual network embedding in networks for cloud computing. Int. J. Web Grid Serv. 13(1–1), 75 (2017)

    Article  Google Scholar 

  58. Xiao, X., Zheng, X., Zhang, Y.: A multidomain survivable virtual network mapping algorithm. Secur. Commun. Netw. 2017(10), 1–12 (2017)

    Article  Google Scholar 

  59. Han, Y.Y., Gong, D.W., Jin, Y.C., Pan, Q.K.: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns. IEEE T. Cybern. PP(99), 1–14 (2017)

    Google Scholar 

  60. Han, Y.Y., Gong, D.W., Sun, X.Y.: An improved NSGA-II algorithm for multi-objective lot-streaming flow shop scheduling problem. Int. J. Prod. Res. 52(8), 2211–2231 (2014)

    Article  Google Scholar 

  61. Gong, D.W., Han, Y.Y., Sun, J.Y.: A novel hybrid multi-objective artificial bee colony algorithm for the blocking lot-streaming flow shop scheduling problems. Knowl.-Based Syst. 148, 115–130 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by National Science Foundation of China under Grant 61773192, 61773246 and 61503170, Shandong Province Higher Educational Science and Technology Program (J17KZ005), Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education (K93-9-2017-02), and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-qing Li or Pei-yong Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Li, Jq., Song, Mx., Li, L., Duan, Py. (2018). Optimal Chiller Loading by MOEA/D for Reducing Energy Consumption. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics