Advertisement

Protein-Protein Docking with Improved Shape Complementarity

  • Yumeng Yan
  • Sheng-You Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)

Abstract

Protein-protein docking is a useful computational tool for predicting the complex structure and interaction between proteins. As the most basic ingredient of scoring functions, shape complementarity plays a critical role in protein-protein docking. In this study, we have presented a new pairwise scoring function to consider long-range interactions in shape complementarity (LSC) for protein-protein docking. Our docking program with LSC was tested on the protein docking benchmark 4.0 of 176 diverse protein-protein complexes, and compared with four other shape-based docking approaches, ZDOCK2.1, MolFit/G, GRAMM, and FTDock/G. It was shown that our LSC significantly improved the docking performance in binding mode predictions in both success rate and number of hits per complex, compared to the other four approaches. The software is freely available as part of our HDOCK web server at http://hdock.phys.hust.edu.cn/.

Keywords

Protein-protein docking Shape complementarity Protein- protein interactions Scoring function Fast-Fourier transformation 

References

  1. 1.
    Wang, J., Wang, W.: A computational approach to simplifying the protein folding alphabet. Nat. Struct. Biol. 6, 1033–1038 (1999)CrossRefGoogle Scholar
  2. 2.
    Zuo, Y., Li, Y., Chen, Y., Li, G., Yan, Z., Yang, L.: PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition. Bioinformatics 33, 122–124 (2017)CrossRefGoogle Scholar
  3. 3.
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J.: Crystal structure of the nucleosome core particle at 2.8 ˚A resolution. Nature 389, 251–260 (1997)CrossRefGoogle Scholar
  4. 4.
    Huang, S.Y.: Search strategies and evaluation in protein-protein docking: principles, advances and challenges. Drug Discov. Today 19, 1081–1096 (2014)CrossRefGoogle Scholar
  5. 5.
    Schreiber, G., Fleishman, S.J.: Computational design of protein-protein interactions. Curr. Opin. Struct. Biol. 23, 903–910 (2013)CrossRefGoogle Scholar
  6. 6.
    Smith, G.R., Sternberg, M.J.: Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 12, 28–35 (2002)CrossRefGoogle Scholar
  7. 7.
    Huang, S.Y.: Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov. Today 20, 969–977 (2015)CrossRefGoogle Scholar
  8. 8.
    Norel, R., Petrey, D., Wolfson, H.J., Nussinov, R.: Examination of shape complementarity in docking of unbound Proteins. Proteins 36, 307–317 (1999)CrossRefGoogle Scholar
  9. 9.
    Chen, R., Weng, Z.: A novel shape complementarity scoring function for protein-protein docking. Proteins 51, 397–408 (2003)CrossRefGoogle Scholar
  10. 10.
    Shentu, Z., Al Hasan, M., Bystroff, C., Zaki, M.J.: Context shapes: efficient complementary shape matching for protein-protein docking. Proteins 70, 1056–1073 (2008)CrossRefGoogle Scholar
  11. 11.
    Kuroda, D., Gray, J.J.: Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 32, 2451–2456 (2016)CrossRefGoogle Scholar
  12. 12.
    Nicola, G., Vakser, I.A.: A simple shape characteristic of protein-protein recognition. Bioinformatics 23, 789–792 (2007)CrossRefGoogle Scholar
  13. 13.
    Hwang, H., Vreven, T., Janin, J., Weng, Z.: Protein-protein docking benchmark version 4.0. Proteins 78, 3111–3114 (2010)CrossRefGoogle Scholar
  14. 14.
    Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A.: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992)CrossRefGoogle Scholar
  15. 15.
    Li, A.J., Nussinov, R.: A set of van der Waals and coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins 32, 111–127 (1998)CrossRefGoogle Scholar
  16. 16.
    Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein-protein docking. Protein Sci. 11, 571–587 (2002)CrossRefGoogle Scholar
  17. 17.
    Vakser, I.A.: Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins Suppl. 1, 226–230 (1997)CrossRefGoogle Scholar
  18. 18.
    Gabb, H.A., Jackson, R.M., Sternberg, M.J.: Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biophysics, School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations