Skip to main content

An Investigation of Stress Concentration, Crack Nucleation, and Fatigue Life of Thin Low Porosity Metallic Auxetic Structures

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure and Damage Evolution, Volume 6

Abstract

This paper investigates, both experimentally and numerically, the mechanical response of low porosity thin metal samples under fatigue loads. The specimens, characterized by an overall porosity of 10%, were designed using selected patterns of voids and then fatigue tested to estimate the influence of both auxetic and non-auxetic tessellations on the mechanical performance. During the loading, detailed deformation maps were recorded by means of bi-dimensional Digital Image Correlation (DIC). The experimental data collected during this study indicate that the use of auxetic patterns could be a strategy to enhance the fatigue life of porous structures. In addition, DIC analysis is shown to be an excellent non-contact experimental method to assess the cumulative damage of the samples and to predict the crack starting points well before they are detectable by the unaided eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: An Introduction to Their Properties and Applications. Butterworth Heinemann, Oxford (1996)

    Google Scholar 

  2. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  3. Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5, 293–296 (1993)

    Article  Google Scholar 

  4. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson's ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  5. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Article  Google Scholar 

  6. Grima, J., Gatt, R.: Perforated sheets exhibiting negative poisson’s ratios. Adv. Eng. Mater. 12, 460–464 (2010)

    Article  Google Scholar 

  7. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12(9), 617–628 (2000)

    Article  Google Scholar 

  8. Sanami, M., Ravirala, N., Alderson, K., Alderson, A.: Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014)

    Article  Google Scholar 

  9. Herakovich, C.T.: Composite laminates with negative through-the-thickness Poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)

    Article  Google Scholar 

  10. Smith, C.W., Grima, J.N., Evans, K.E.: A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48(17), 4349–4356 (2000)

    Article  Google Scholar 

  11. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science. 315, 487–490 (2007)

    Article  Google Scholar 

  12. Bhullar, S.K., Ko, J., Ahmed, F., Jun, M.B.G.: Design and fabrication of stent with negative Poisson’s ratio. Int. J. Mech. Aerosp. Ind. Mechatronic Manuf. Eng. 8(2), 448–454 (2014)

    Google Scholar 

  13. Hou, X., Hu, H., Silberschmidt, V.: A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random inclusions. Compos. Sci. Technol. 72, 1848–1854 (2012)

    Article  Google Scholar 

  14. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)

    Article  Google Scholar 

  15. Chen, Y., Li, T., Scarpa, F., Wang, L.: Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control. Phys. Rev. Appl. 7(2), (2017)

    Google Scholar 

  16. Larsen, U.D., Sigmund, O., Bouwstra, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Syst. 6, 99–106 (1997)

    Article  Google Scholar 

  17. Jiang, J.W., Kim, S.Y., Park, H.S.: Auxetic nanomaterials: recent progress and future development. Appl. Phys. Rev. 3(4), 2016

    Article  Google Scholar 

  18. Taylor, M., Francesconi, L., Gerendas, M., Shanian, A., Carson, C., Bertoldi, K.: Low porosity metallic periodic structures with negative Poisson’s ratio. Adv. Mater. 26(15), 2365–2370 (2014)

    Article  Google Scholar 

  19. Carta, G., Brun, M., Baldi, A.: Design of a porous material with isotropic negative Poisson’s ratio. Mech. Mater. 97, 67–75 (2016)

    Article  Google Scholar 

  20. Mitschke, H., Schwerdtfeger, J., Schury, F., Stingl, M., Körner, C., Singer, R.F., Robins, V., Mecke, K., Schröder-Turk, G.E.: Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23, 2669–2674 (2011)

    Article  Google Scholar 

  21. Francesconi, L., Taylor, M., Bertoldi, K., Baldi, A.: Static and modal analysis of low porosity thin metallic auxetic structures using speckle interferometry and digital image correlation. Exp. Mech. 58(2), 283–300 (2018)

    Article  Google Scholar 

  22. Javid, F., Liu, J., Rafsanjani, A., Schaenzer, M., Pham, M.Q., Backman, D., Yandt, S., Innes, M.C., Booth-Morrison, C., Gerendas, M., Scarinci, T., Shanian, A., Bertoldi, K.: On the design of porous structures with enhanced fatigue life. Extreme Mech. Lett. 16, 13–17 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francesconi, L., Taylor, M., Baldi, A. (2019). An Investigation of Stress Concentration, Crack Nucleation, and Fatigue Life of Thin Low Porosity Metallic Auxetic Structures. In: Carroll, J., Xia, S., Beese, A., Berke, R., Pataky, G. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95879-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95879-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95878-1

  • Online ISBN: 978-3-319-95879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics