Alaieri F, Vellino A (2016) Ethical decision making in robots: autonomy, trust and responsibility. In: Agah A, Cabibihan JJ, Howard AM, Salichs MA, He H (eds) Social robotics: 8th international conference. Springer International Publishing, Kansas City, MO, pp 159–168
CrossRef
Google Scholar
Amershi S, Cakmak M, Knox WB, Kulesza T (2014) Power to the people: the role of humans in interactive machine learning. AI Mag 35(4):105–120
CrossRef
Google Scholar
Brown ET, Ottley A, Zhao H, Lin Q, Souvenir R, Endert A, Chang R (2014) Finding Waldo: learning about users from their interactions. IEEE Trans Visual Comput Graphics 20(12):1663–1672
CrossRef
Google Scholar
Burnett M, Stumpf S, Macbeth J, Makri S, Beckwith L, Kwan I, Peters A, Jernigan W (2016) GenderMag: a method for evaluating software’s gender inclusiveness. Interact Comput 28(6):760–787
CrossRef
Google Scholar
Busemeyer JR, Diederich A (2010) Cognitive modeling. Sage, Los Angeles, CA
Google Scholar
Busemeyer JR, Townsend JT (1993) Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol Rev 100(3):432–459
CrossRef
Google Scholar
Chaiken S, Trope Y (1999) Dual-process theories in social psychology. Guilford Press, New York
Google Scholar
Cho I, Wesslen R, Karduni A, Santhanam S, Shaikh S, Dou W (2017) The anchoring effect in decision-making with visual analytics. In: IEEE conference on visual analytics science and technology (VAST)
Google Scholar
Dimara E, Bezerianos A, Dragicevic P (2017) The attraction effect in information visualization. IEEE Trans Visual Comput Graphics 23(1):471–480
CrossRef
Google Scholar
Dou W, Jeong DH, Stukes F, Ribarsky W, Lipford HR, Chang R (2009) Recovering reasoning process from user interactions. IEEE Comput Graphics Appl pp 52–61. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.407&rep=rep1&type=pdf
CrossRef
Google Scholar
Egeth HE, Yantis S (1997) Visual attention: control, representation, and time course. Annu Rev Psychol 48(1):269–297
CrossRef
Google Scholar
Endert A, Ribarsky W, Turkay C, Wong B, Nabney I, Blanco ID, Rossi F (2017) The state of the art in integrating machine learning into visual analytics. In: Computer graphics forum. Wiley Online Library
Google Scholar
Fekete JD, Van Wijk J, Stasko J, North C (2008) The value of information visualization. Inf Visual pp 1–18
Google Scholar
Friedman B (1996) Value-sensitive design. Interactions 3(6):16–23
CrossRef
Google Scholar
Friedman B, Nissenbaum H (1996) Bias in computer systems. ACM Trans Inf Syst (TOIS) 14(3):330–347
CrossRef
Google Scholar
Frisby JP, Stone JV (2010) Seeing: the computational approach to biological vision. The MIT Press, Cambridge, MA
Google Scholar
Gotz D, Zhou MX (2009) Characterizing users’ visual analytic activity for insight provenance. Inf Visual 8(1):42–55
CrossRef
Google Scholar
Gotz D, Sun S, Cao N (2016) Adaptive contextualization: combating bias during high-dimensional visualization and data selection. In: Proceedings of the 21st international conference on intelligent user interfaces - IUI ’16 pp 85–95. http://dl.acm.org/citation.cfm?doid=2856767.2856779
Green DM, Birdsall TG, Tanner WP Jr (1957) Signal detection as a function of signal intensity and duration. J Acoust Soc Am 29(4):523–531
CrossRef
Google Scholar
Heuer Jr RJ (1999) Psychology of intelligence analysis. Washington, D.C
Google Scholar
Hoffman RR, Johnson M, Bradshaw JM, Underbrink A (2013) Trust in automation. IEEE Intell Syst 28(1):84–88
CrossRef
Google Scholar
Horvitz E (1999) Principles of mixed-initiative user interfaces. In: Proceedings of the SIGCHI conference on human factors in computing systems pp 159–166
Google Scholar
Huber J, Payne JW, Puto C (1982) Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J Consum Res 9(1):90–98
CrossRef
Google Scholar
Kahneman D, Frederick S (2005) A model of heuristic judgment. The Cambridge handbook of thinking and reasoning pp 267–294
Google Scholar
Klein G, Moon B, Hoffman RR (2006) Making sense of sensemaking 2: a macrocognitive model. IEEE Intell Syst 21(5):88–92
CrossRef
Google Scholar
Koffka K (2013) Principles of gestalt psychology, vol 44. Routledge, London
CrossRef
Google Scholar
Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Hum Factors 46(1):50–80
CrossRef
Google Scholar
Lee P (2016) Learning from Tay’s introduction. https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
Luce RD (1977) The choice axiom after twenty years. J Math Psychol 15(3):215–233
MathSciNet
CrossRef
Google Scholar
Macmillan NA, Creelman CD (2004) Detection theory: a user’s guide. Psychology Press, New York
CrossRef
Google Scholar
Malhotra NK (1982) Information load and consumer decision making. J Consum Res 8(4):419–430
CrossRef
Google Scholar
Milord JT, Perry RP (1977) A methodological study of overloadx. J Gen Psychol 97(1):131–137
CrossRef
Google Scholar
Mosier KL, Skitka LJ (1996) Human decision makers and automated decision aids: made for each other. In: Parasuraman R, Mouloua M (eds) Automation and human performance: theory and applications. Lawrence Erlbaum Associates, Mahwah, NJ, pp 201–220
Google Scholar
Mosier KL, Skitka LJ (1999) Automation use and automation bias. In: Proceedings of the human factors and ergonomics society annual meeting, vol 43. Sage, Beverley Hills, pp 344–348
CrossRef
Google Scholar
Nickerson RS (1998) Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol 2(2):175–220
CrossRef
Google Scholar
North C, May R, Chang R, Pike B, Endert A, Fink GA, Dou W (2011) Analytic provenance: process+interaction+insight. In: 29th annual CHI conference on human factors in computing systems, CHI 2011 pp 33–36
Google Scholar
Nosofsky RM (1991) Stimulus bias, asymmetric similarity, and classification. Cogn Psychol 23(1):94–140
CrossRef
Google Scholar
Parasuraman R, Manzey DH (2010) Complacency and bias in human use of automation: an attentional integration. Hum Factors 52:381–410
CrossRef
Google Scholar
Patterson RE, Blaha LM, Grinstein GG, Liggett KK, Kaveney DE, Sheldon KC, Havig PR, Moore JA (2014) A human cognition framework for information visualization. Comput Graphics 42:42–58
CrossRef
Google Scholar
Pirolli P, Card S (2005) The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of international conference on intelligence analysis 2005, pp 2–4. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Sensemaking+Process+and+Leverage+Points+for+Analyst+Technology+as+Identified+Through+Cognitive+Task+Analysis#0
Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25
CrossRef
Google Scholar
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025
CrossRef
Google Scholar
Sacha D, Stoffel A, Stoffel F, Kwon BC, Ellis G, Keim DA (2014) Knowledge generation model for visual analytics. IEEE Trans Visual Comput Graphics 20(12):1604–1613
CrossRef
Google Scholar
Simons DJ, Chabris CF (1999) Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28(9):1059–1074
CrossRef
Google Scholar
Stanovich KE, West RF (2000) Advancing the rationality debate. Behav Brain Sci 23(5):701–717
CrossRef
Google Scholar
Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113(4):766–786
CrossRef
Google Scholar
Treisman A (1985) Preattentive processing in vision. Comput Vis Graphics Image Process 31(2):156–177
MathSciNet
CrossRef
Google Scholar
Tsotsos JK (2011) A computational perspective on visual attention. MIT Press, Cambridge, MA
CrossRef
Google Scholar
Tversky A, Kahneman D (1973) Availability: a heuristic for judging frequency and probability. Cogn Psychol 5(2):207–232
CrossRef
Google Scholar
Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185:1124–1131
CrossRef
Google Scholar
Valdez AC, Ziefle M, Sedlmair M (2018a) A framework for studying biases in visualization research. In: Ellis G (ed) Cognitive biases in visualizations, Chap. 2. Springer, Berlin
Google Scholar
Valdez AC, Ziefle M, Sedlmair M (2018b) Priming and anchoring effects in visualization. IEEE Trans Visual Comput Graphics 24(1):584–594
CrossRef
Google Scholar
Vandekerckhove J (2014) A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. J Math Psychol 60:58–71
MathSciNet
CrossRef
Google Scholar
Wall E, Blaha LM, Franklin L, Endert A (2017) Warning, bias may occur: a proposed approach to detecting cognitive bias in interactive visual analytics. In: IEEE conference on visual analytics science and technology (VAST)
Google Scholar
Xu K, Attfield S, Jankun-Kelly T, Wheat A, Nguyen PH, Selvaraj N (2015) Analytic provenance for sensemaking: a research agenda. IEEE Comput Graphics Appl 35(3):56–64
CrossRef
Google Scholar