Allium Genetic Resources

  • E. R. Joachim Keller
  • Chris Kik
Part of the Compendium of Plant Genomes book series (CPG)


An overview of the developments in Allium genetic resources during the past 25 years is presented in this chapter. A first important development has been the introduction and further development of web-based genebanking information systems (e.g. GENESYS, PLANTSEARCH), which facilitated the exchange of data to a large extent between Allium collection holders worldwide. These information systems made it possible to obtain an overview of the Allium genetic resources managed worldwide and identify the gaps in collections which still need to be filled, especially in the face of the ongoing genetic erosion. A second important area of progress has been the development of new methods for the maintenance of Allium germplasm, especially cryopreservation. This method has made it possible to maintain Allium accessions in a cheap and effective way. The method is especially important for the conservation of vegetatively maintained germplasm. Other developments in Allium genebanking are the improvement of the health status of the germplasm kept in the collections and the continuing characterization and evaluation of germplasm, which stimulates the utilization of the Allium genetic resources held in genebanks. Significant changes could also be observed with respect to acquisition and exchange of plant genetic resources due to many and complex new regulations on the legal and organizational levels due to the adoption of the CBD and IT-PGRFA by many countries. It makes the handling of the plant accessions safer and more consistent but also more circumstantial. Finally, we need to underline that in an increasingly changing world with all the threats of genetic erosion and extinction due to disappearance of traditional cultivation methods, devastation of our environment and climatic change, the conservation of genetic resources is of prime importance for agriculture. Especially for breeders, a highly diverse genepool of a crop plant is an invaluable treasure. The importance to keep this treasure will no doubt become even more important in the future.



The authors gratefully acknowledge the contributions they received from many colleagues working in the field of Allium genetic resources, mentioned in the text. Many of them provided information which added to our knowledge of activities occurring worldwide, especially for the data about their collections. More, in particular, CK wants to thank Dr. F. O. Khassanov for his help with respect to the evaluation of the taxonomic data as presented in Tables 3.5 and 3.8. Furthermore, the authors are also highly appreciative to all the donors of funds who made it possible to conduct projects and to carry out the necessary tasks to manage the precious Allium genetic resources which are conserved globally.


  1. Astley D (1990) Conservation of genetic resources. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, vol 1. Botany physiology and genetics. CRC Press, Boca Raton, Florida, pp 177–198Google Scholar
  2. Ayabe M, Sumi S (2001) A novel and efficient tissue culture method—“stem-disc dome culture”—for producing virus-free garlic (Allium sativum L.). Plant Cell Rep 20:503–507CrossRefGoogle Scholar
  3. Baek H, Kim H, Cho E, Chae Y, Engelmann F (2003) Importance of explant size and origin and of preconditioning treatments for cryopreservation of garlic shoot apices by vitrification. CryoLetters 24:381–388PubMedGoogle Scholar
  4. Barandiaran X, Martin N, Rodriguez-Conde MF, Di Pietro A, Martin J (1999) An efficient method for callus culture and shoot regeneration of garlic (Allium sativum L.). HortScience 34:348–349Google Scholar
  5. Bhojwani SS (1980) In vitro propagation of garlic by shoot proliferation. Sci Hortic 13:47–52CrossRefGoogle Scholar
  6. Bockish T, Saranga Y, Altman A (1997) Garlic micropropagation by somatic embryogenesis. Acta Hortic 447:241–242CrossRefGoogle Scholar
  7. Brewbaker JL, Kwack BH (1963) The essential role of calcium in pollen germination and pollen tube growth. Am J Bot 50:859–865CrossRefGoogle Scholar
  8. Buiteveld J, Creemers-Molenaar J (1994) Plant regeneration from protoplasts isolated from suspension cultures of leek (Allium ampeloprasum L.). Plant Sci 100:203–210CrossRefGoogle Scholar
  9. Buiteveld J, Kassies W, Geels R, van Lookeren Campagne MM, Jacobsen E, Creemers-Molenaar J (1998a) Biased chloroplast and mitochondrial transmission in somatic hybrids of Allium ampeloprasum L. and Allium cepa L. Plant Sci 131:219–228CrossRefGoogle Scholar
  10. Buiteveld J, Suo Y, Lookeren Campagne M, Creemers-Molenaar J (1998b) Production and characterization of somatic hybrid plants between leek (Allium ampeloprasum L.) and onion (Allium cepa L.). Theor Appl Genet 96:765–775CrossRefGoogle Scholar
  11. Celli MG, Perotto MC, Buraschi D, Conci VC (2016) Biological and molecular characterization of Garlic Virus D and its effects on yields in garlic. Acta Hortic 1143:193–200CrossRefGoogle Scholar
  12. Colmsee C, Keller ERJ, Zanke C, Senula A, Funke T, Oppermann M, Weise S, Scholz U (2012) The garlic and shallot core collection image database of IPK presenting two vegetatively maintained crops in the Federal ex situ genebank for agricultural and horticultural crops at Gatersleben, Germany. Genet Resour Crop Evol 59:1407–1415CrossRefGoogle Scholar
  13. Conci VC, Nome SF (1991) Virus free garlic (Allium sativum L.) plants obtained by thermotherapy and meristem tip culture. J Phytopathol 132:186–192CrossRefGoogle Scholar
  14. Conci VC, Canavelli A, Lunello P, Rienzo JD, Nome SF, Zumelzu G, Italia R (2003) Yield losses associated with virus-infected garlic plants during five successive years. Plant Dis 87:1411–1415CrossRefGoogle Scholar
  15. Conci VC, Perotto MC, Cafrune E, Lunello P (2005) Program for intensive production of virus-free garlic plants. Acta Hortic 688:195–200CrossRefGoogle Scholar
  16. Cromarty AS, Ellis RH, Roberts EH (1982) rev. 1985, 1990. The design of seed storage facilities for genetic conservation. Handbooks for genebanks. No 1. IBPGR, RomeGoogle Scholar
  17. de Vries JN, Wietsma WA, de Vries T (1992) Introgression of leaf blight resistance from Allium roylei Stearn into onion (A. cepa L.). Euphytica 62:127–133CrossRefGoogle Scholar
  18. Doležel J, Novák FJ, Lužný J (1980) Embryo development and in vitro culture of Allium cepa and its interspecific hybrids. Z Pflanzenzücht 85:177–184Google Scholar
  19. Dulloo ME, Ebert AW, Dussert S, Gotor E, Astorga C, Vasquez N, Rakotomalala JJ, Rabemiafara A, Eira M, Bellachew B, Omondi C, Engelmann F, Anthony F, Watts J, Qamar Z, Snook L (2009) Cost efficiency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci 49:2123–2138CrossRefGoogle Scholar
  20. Dunstan DI, Short KC (1979) Shoot production from the flower head of Allium cepa L. Sci Hortic 10:345–356CrossRefGoogle Scholar
  21. Dussert S, Engelman F, Noirot M (2003) Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 24:149–160PubMedGoogle Scholar
  22. Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008) Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol 147:2096–2106PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ebert AW (2011) Vegetable germplasm conservation and utilization at AVRDC—The World Vegetable Center. Acta Hortic 898:89–96CrossRefGoogle Scholar
  24. Ellis D, Skogerboe D, Andre C, Hellier B, Volk G (2006) Implementation of garlic cryopreservation techniques in the national plant germplasm system. CryoLetters 27:99–106PubMedGoogle Scholar
  25. Ellis RH, Hong TD, Roberts EH (1985a), repr. 1989. Principles and methodology. Handbooks for genebanks No. 2, Handbook of seed technology for genebanks, vol 1, IBPGR, RomeGoogle Scholar
  26. Ellis RH, Hong TD, Roberts EH (1985b) repr. 1989. Compendium of specific germination information and test recommendations. Handbooks for genebanks. No. 3. Handbook of seed technology for genebanks, vol 2. IBPGR, RomeGoogle Scholar
  27. Engelmann F (2012) Germplasm collection, storage, and conservation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Prospects for the 21st century. Elsevier Inc., pp 255–267Google Scholar
  28. Espirito Santo S, Keiss H-P, Meyer K, Buytenhek R, Roos T, Dirsch V, Buniatian G, Ende C, Günther J, Heise K, Kellert D, Lerche K, Pavlica S, Struck F, Usbeck E, Voigt J, Zellmer S, Princen JMG, Vollmar AM, Gebhardt R (2007) Garlic and cardiovascular diseases. Med Aromat Plant Sci Biotechnol 1:25–30Google Scholar
  29. Etoh T (1986) Fertility of the garlic clones collected in Soviet Central Asia. J Jpn Soc Hortic Sci 55:312–319CrossRefGoogle Scholar
  30. Etoh T, Keller ERJ, Senula A (2001) Fertile garlic clones in the Gatersleben collection. Mem Fac Agric Kagoshima Univ 37:29–35Google Scholar
  31. Fajardo TVM, Nishijima M, Buso JA, Torres AC, Ávila AC, Resende RO (2001) Garlic viral complex: Identification of Potyviruses and Carlavirus in Central Brazil. Fitopatol Brasil 26:619–626CrossRefGoogle Scholar
  32. FAO (2014) Genebank Standards for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Commission on Genetic Resources for Food and Agriculture, RomeGoogle Scholar
  33. Fellner M (1993) Problems of garlic protoplast culture—literature review, speculations and hypothesis. IAPTC Newsl 71:4–13Google Scholar
  34. Fellner M, Havranek P (1992) Isolation of Allium pollen protoplasts. Plant Cell Tiss Org 29:275–279CrossRefGoogle Scholar
  35. Fellner M, Kneifel W, Gregorits D, Leonhardt W (1996) Identification and antibiotic sensitivity of microbial contaminants from callus cultures of garlic Allium sativum L. and Allium longicuspis Regel. Plant Sci 113:193–201CrossRefGoogle Scholar
  36. Féréol L, Chovelon V, Causse S, Michaux-Ferriere N, Kahane R (2002) Evidence of a somatic embryogenesis process for plant regeneration in garlic (Allium sativum L.). Plant Cell Rep 21:197–203CrossRefGoogle Scholar
  37. Féréol L, Chovelon V, Causse S, Kalumvueziko ML, Kahane R (2005) Embryogenic cell suspension cultures of garlic (Allium sativum L.) as method for mass propagation and potential material for genetic improvement. Acta Hortic 688:65–74CrossRefGoogle Scholar
  38. Frankel OH, Bennett E (1970) Genetic resources in plants—their exploration and conservation. IBP handbook 11. Blackwell Scientific Publications, Oxford, UK, p 554Google Scholar
  39. Frese L, Palmé A, Neuhaus G, Bülow L, Maxted N, Poulsen G, Kik C (2016a) On the conservation and sustainable use of plant genetic resources in Europe: a stakeholder analysis. In: Maxted N, Dulloo ME, Ford-Lloyd BV (eds) Enhancing crop genepool use, capturing wild relative and landrace diversity for crop improvement. CABI Publishing, Wallingford, UK, pp 388–400CrossRefGoogle Scholar
  40. Frese L, Palmé A, Bülow L, Kik C (2016b) Towards an improved European plant germplasm system. In: Maxted N, Dulloo ME, Ford-Lloyd BV (eds) Enhancing crop genepool use, capturing wild relative and landrace diversity for crop improvement. CABI Publishing, Wallingford, UK, pp 401–411CrossRefGoogle Scholar
  41. Friesen N, Fritsch R, Bachmann K (1997) Hybrid origin of some ornamental Alliums of subgenus Melanocrommyum verified with GISH and RAPD. Theor Appl Gen 95:1229–1238CrossRefGoogle Scholar
  42. Friesen N, Fritsch RM, Blattner FR (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22:372–395CrossRefGoogle Scholar
  43. Frison EA, Serwinski J (1995) Directory of European institutions holding plant genetic resources, 4th edn, vols 1 and 2. International Plant Genetic Resources Institute, Rome, Italy, p 499Google Scholar
  44. Fritsch RM (2015) Checklist of ornamental Allium species and cultivars currently offered in the trade., pp 1–64
  45. Fritsch RM (2016). A preliminary review of Allium subg. Melanocrommyum in Central Asia. IPK Gatersleben.
  46. Fritsch RM, Abbasi M (2013) A taxonomic review of Allium subg. Melanocrommyum in Iran. IPK, Gatersleben. ISBN 978-3-9813096-3-8Google Scholar
  47. Fritsch RM, Friesen N (2002) Evolution, domestication and taxonomy. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CAB International, pp 5–30Google Scholar
  48. Fritsch RM, Gurushidze M (2009) Phylogenetic relationships of ornamental species in Allium L. subg. Melanocrommyum (Webb et Berthel.) Rouy (Alliaceae). Israel J Plant Sci 57:287–295CrossRefGoogle Scholar
  49. Fritsch RM, Blattner FR, Gurushidze M (2010) New classification of Allium L. subg. Melanocrommyum (Webb & Berthel.) Rouy (Alliaceae) based on molecular and morphological characters. Phyton 49:145–220Google Scholar
  50. Ganeshan S (1986) Viability and fertilizing capacity of onion pollen Allium cepa stored in liquid nitrogen. Trop Agric (St Augustine) 63:46–48Google Scholar
  51. Ganeshan S, Rajasekharan PE, Shashikumar S, Decruze W (2008) Cryopreservation of pollen. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 443–464CrossRefGoogle Scholar
  52. García Lampasona S, Martínez L, Burba JL (2003) Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132:115–119CrossRefGoogle Scholar
  53. Gregory M, Fritsch RM, Friesen NW, Khassanov FO, McNeal DW (1998) Nomenclator Alliorum. Allium names and synonyms—a world guide. Royal Botanical Gardens Kew, UKGoogle Scholar
  54. Gurushidze M, Fritsch RM, Blattner FR (2008) Phylogenetic analysis of Allium subg. Melanocrommyum infers cryptic species and demands a new sectional classification. Mol Phylogenet Evol 49:997–1007. Epub 2008 Sep 14CrossRefPubMedGoogle Scholar
  55. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  56. Hammer K, Hanelt P, Tittel C (1977) A collection of indigenous cultivated plants from the territory of GDR. Kulturpflanze 25:89–99 (in German)CrossRefGoogle Scholar
  57. Hannan R, Garoutte D (1996) Cryopreservation of garlic germplasm as meristems in LN for long term storage. In: Havey MJ (eds) Proceedings of the national onion research conference, USA. Madison, WI, pp 101–103Google Scholar
  58. Hanson J (2017) Safety duplication. Available via Crop Genebank knowledge base.
  59. Havranek P (1972) Virus-free garlic clones obtained from meristem cultures. Ochr Rostl 8:291–298Google Scholar
  60. Havranek P (1974) The effect of virus diseases on the yield of common garlic. Ochr Rostl 10:251–256Google Scholar
  61. Havranek P, Novak FJ (1973) The bud formation in the callus cultures of Allium sativum L. Z Pflanzenphysiol 68:308–318CrossRefGoogle Scholar
  62. Hong TD, Linington S, Ellis RH (1998) Compendium of information on seed storage behaviour. Handbook for genebanks No. 4, IPGRI, RomeGoogle Scholar
  63. Huchette O, Auger J, Arnault I, Barandiaran X, Chovelon V, Kahane R (2007) Garlic cultivation for high health-value. Med Aromat Plant Sci Biotechnol 1:16–20Google Scholar
  64. Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Amer Soc Hortic Sci 128:246–252Google Scholar
  65. Ipek M, Ipek A, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor Appl Genet 110:228–236PubMedPubMedCentralCrossRefGoogle Scholar
  66. IPGRI, ECP/GR, AVRDC (2001) Descriptors for Allium (Allium spp.). International Plant Genetic Resources Institute, Rome, Italy; European Cooperative Programme for Crop Genetic Resources Networks (ECP/GR), Asian Vegetable Research and Development Center, TaiwanGoogle Scholar
  67. Jenderek MM, Hannan RM (2000) Seed producing ability of garlic (Allium sativum L.) clones from two public US collections. In: Randle WM (ed) Proceedings of the third international symposium on edible Alliaceae. University of Georgia, Athens, GA, USA, pp 73–75Google Scholar
  68. Johri BM, Vasil IK (1961) Physiology of pollen. Bot Rev 27:325–381CrossRefGoogle Scholar
  69. Jones MG, Collin HA, Tregova A, Trueman L, Brown L, Cosstick R, Hughes J, Milne J, Wilkinson MC, Tomsett AB, Thomas B (2007) The biochemical and physiological genesis of alliin in garlic. Med Aromat Plant Sci Biotechnol 1:21–24Google Scholar
  70. Kahane R, Rancillac M, Teyssendier de la Serve B (1992) Long-term multiplication of onion (Allium cepa L.) by cyclic shoot regeneration in vitro. Plant Cell Tiss Org 28:281–288CrossRefGoogle Scholar
  71. Kahane R, Vialle-Guerin E, Boukema I, Tzanoudakis D, Bellamy C, Chamaux C, Kik C (2001) Changes in non-structural carbohydrate composition in high solid and sweet onions in a multi-location trail. Environ Exp Bot 45:73–83PubMedCrossRefGoogle Scholar
  72. Kamenetsky R, Rabinowitch HD (2001) Floral development in bolting garlic. Sex Plant Reprod 13:235–241CrossRefGoogle Scholar
  73. Kamenetsky R, London Shafir I, Khassanov F, Kik C, van Heusden AW, Vrielink-van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14:281–295CrossRefGoogle Scholar
  74. Kamenetsky R, Khassanov F, Rabinowitch HD, Auger J, Kik C (2007) Garlic biodiversity and genetic resources. Med Aromat Plant Sci Biotechnol 1:1–5Google Scholar
  75. Kästner U, Klahr A, Keller ERJ, Kahane R (2001) Formation of onion bulblets in vitro and viability during medium-term storage. Plant Cell Rep 20:137–142CrossRefGoogle Scholar
  76. Karim MA, Adachi T (1997) Cell suspension, isolation and culture of protoplasts of Allium cepa. Plant Cell Tiss Org 51:43–47CrossRefGoogle Scholar
  77. Karlová K, Dušek K, Stavělíková H (2009) Virus diseases in collection of genetic resources of garlic in the Czech Republic. Agriculture (Poľnohospodárstvo) 55:58–60Google Scholar
  78. Keller ERJ (2002) Cryopreservation of Allium sativum L. (garlic). In: Towill LE, Bajaj YPS (eds) Biotechnology in agriculture and forestry, Cryopreservation of plant germplasm II, vol 50. Springer, Heidelberg, pp 37–47CrossRefGoogle Scholar
  79. Keller ERJ (2005) Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. CryoLetters 26:357–366PubMedGoogle Scholar
  80. Keller ERJ (2006) Die Erhöhung von Effektivität und Sicherheit bei der Erhaltung permanent vegetativer Genbank-Akzessionen durch In-vitro-Kultur und Kryokonservierung. Vortr Pflanzenzücht 70:16–26Google Scholar
  81. Keller ERJ, Senula A (2001) Progress in structuring and maintaining the garlic (Allium sativum) diversity for the European GenRes Project. Acta Hort 555:189–193CrossRefGoogle Scholar
  82. Keller ERJ, Senula A (2013) Micropropagation and cryopreservation of garlic (Allium sativum L.). In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Methods in molecular biology vol 11013, Springer Science Business Media, New York, pp 353–368Google Scholar
  83. Keller ERJ, Senula A (2016) Recent aspects of Allium cryopreservation in the Federal German Genebank. Acta Hortic 1143:35–44CrossRefGoogle Scholar
  84. Keller ERJ, Lesemann DE, Maaß HI, Meister A, Lux H, Schubert I (1995) Maintenance of an in vitro collection of Allium in the Gatersleben genebank—problems and use. In: Terzi M, Cella R, Falavigna A (eds) Current issues in plant molecular and cellular biology. Proceedings of VIIIth international congress plant tissue cell culture, Florence, June 12–17, 1994, pp 347–352Google Scholar
  85. Keller ERJ, Schubert I, Fuchs J, Meister A (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424PubMedCrossRefGoogle Scholar
  86. Keller ERJ, Lesemann D-E, Lux H, Maaß HI, Schubert I (1997) Application of in vitro culture to onion and garlic for the management and use of genetic resources at Gatersleben. Acta Hortic 433:141–150CrossRefGoogle Scholar
  87. Keller ERJ, Kaczmarczyk A, Senula A (2008) Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. CryoLetters 29:53–62Google Scholar
  88. Keller ERJ, Senula A, Zanke C (2011a) Alliaceae in cryopreservation, achievements and constraints. Acta Hortic 908:495–508CrossRefGoogle Scholar
  89. Keller ERJ, Senula A, Zanke C, Grübe M, Kaczmarczyk A, Nukari A, Teyssedre D, Kremer Morales C, Edesi J, Pelc M, Olas-Sochacka M (2011b). Ways of collaboration—COST short-term scientific missions on three crops and their outcomes—potato, garlic and mint. In: Grapin A, Keller ERJ, Lynch PT, Panis B, Revilla Bahillo A, Engelmann F (eds) Cryopreservation of crop species in Europe. COST Office, Brussels, pp 110–115Google Scholar
  90. Keller ERJ, Zanke CD, Kotlinska T, Olas-Sochacka M, Reis A, Barata AM (2011c) Broadening the spectrum of usable organ sources for cryopreservation of garlic—an AEGIS project report. Bioversity Newsl Europe 53:9Google Scholar
  91. Keller ERJ, Blattner FR, Fritsch R, Pistrick K, Senula A, Zanke CD (2012a) The genus Allium in the Gatersleben plant collections—progress in germplasm preservation, characterization and phylogenetic analysis. Acta Hortic 969:273–287CrossRefGoogle Scholar
  92. Keller ERJ, Panis B, Engelmann F (2012b) In vitro storage and cryopreservation as substantial complements in concerted actions to better maintain and use crop germplasm. Acta Hortic 961:35–50CrossRefGoogle Scholar
  93. Keller ERJ, Zanke C, Blattner FR, Stavělíková H, Zámečník J, Kotlińska T, Miccolis V, Kik C, Esnault F, Solberg S (2012c) EURALLIVEG: establishment of a European core collection by cryopreservation and virus elimination in garlic. Acta Hortic 969:319–327CrossRefGoogle Scholar
  94. Keller ERJ, Senula A, Höfer M, Heine-Dobbernack E, Schumacher HM (2013a) Cryopreservation of plant cells. In: Flickinger MC (eds) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley., pp 1–15
  95. Keller ERJ, Zanke CD, Senula A, Breuing A, Hardeweg B, Winkelmann T (2013b) Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks. Genet Resour Crop Evol 60:913–926CrossRefGoogle Scholar
  96. Keller ERJ, Senula A, Grübe M, Diekmann K, Dehmer KJ (2014) Fifteen years of cryopreservation in the IPK genebank—experience, conclusions and outlook. Acta Hortic 1039:249–263CrossRefGoogle Scholar
  97. Keller ERJ, Grübe M, Hajirezaei M-R, Melzer M, Mock H-P, Rolletschek H, Senula A, Subbarayan K (2016) Experience in large-scale cryopreservation and links to applied research for safe storage of plant germplasm. Acta Hortic 1113:239–249CrossRefGoogle Scholar
  98. Khosa JS, McCallum J, Dhatt AS, MacKnight RC (2016) Enhancing onion breeding using molecular tools. Plant Breeding 135:9–20CrossRefGoogle Scholar
  99. Khrustaleva LI, Kik C (1998) Cytogenetical studies in the bridge cross Allium cepa × (A. fistulosum × A. roylei). Theor Appl Genet 96:8–14CrossRefGoogle Scholar
  100. Khrustaleva LI, Kik C (2000) Introgression of Allium fistulosum into A. cepa mediated by A. roylei. Theor Appl Genet 100:17–26CrossRefGoogle Scholar
  101. Kik C (2002) Exploitation of wild relatives for the breeding of cultivated Allium species. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing Oxon UK, pp 81–100Google Scholar
  102. Kik C, Kahane R, Gebhardt R (2001) Garlic and health. Nutr Metab Cardiovasc Dis 11:57–65PubMedGoogle Scholar
  103. Kim HH (2004) Analysis of factors affecting the cryopreservation of garlic shoot tips. Dissertations Department of Agronomy, Graduate School, Seoul National UniversityGoogle Scholar
  104. Kim H-H, Cho E-G, Baek H-J, Kim C-Y, Keller ERJ, Engelmann F (2004a) Cryopreservation of garlic shoot tips by vitrification: effects of dehydration, rewarming, unloading and regrowth conditions. CryoLetters 25:59–70PubMedGoogle Scholar
  105. Kim H-H, Kim J-B, Baek H-J, Cho E-G, Chae Y-A, Engelmann F (2004b) Evolution of DMSO concentration in garlic shoot tips during a vitrification procedure. CryoLetters 25:91–100Google Scholar
  106. Kim J-B, Kim H-H, Baek H-J, Cho E-G, Kim Y-H, Engelmann F (2005a) Changes in sucrose and glycerol content in garlic shoot tips during freezing using PVS3 solution. CryoLetters 26:103–112PubMedGoogle Scholar
  107. Kim H-H, Yoon J-W, Kim J-B, Engelmann F, Cho E-G (2005b) Thermal analysis of garlic shoot tips during a vitrification procedure. CryoLetters 26:33–44PubMedGoogle Scholar
  108. Kim H-H, Lee J-K, Yoon J-W, Ji J-J, Nam S-S, Hwang H-S, Cho E-G, Engelmann F (2006) Cryopreservation of garlic bulbil primordia by the droplet vitrification procedure. CryoLetters 27:143–153PubMedGoogle Scholar
  109. Kim H-H, Lee J-K, Hwang H-S, Engelmann F (2007a) Cryopreservation of garlic germplasm collections using the droplet-vitrification technique. CryoLetters 28:471–482PubMedGoogle Scholar
  110. Kim H-H, Lee Y-K, Kim T-S, Cho E-G, Lee J-K, Ji J-J, Nam S-S, Engelmann F (2007b) Implementation of cryopreservation for garlic genetic resources by the droplet vitrification procedure. Acta Hortic 760:209–215Google Scholar
  111. Kim H-H, Lee Y-G, Park S-U, Lee S-C, Baek H-J, Cho E-G, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 30:291–299PubMedGoogle Scholar
  112. Kim H-H, Lee Y-G, Shin D-J, Ko H-C, Gwag J-G, Cho E-G, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30:320–334PubMedGoogle Scholar
  113. Kim H-H, Popova E, Shin D-J, Yi J-Y, Kim C-H, Lee J-S, Yoon M-K, Engelmann F (2012) Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. CryoLetters 33:45–57PubMedGoogle Scholar
  114. Kofoet A, Kik C, Wietsma WA, de Vries JN (1990) Inheritance of resistance to downy mildew (Peronospora destructor [Berk.]Casp.) from Allium roylei Stearn in the backcross Allium cepa L. × (A. roylei × A. cepa). Plant Breeding 105:144–149CrossRefGoogle Scholar
  115. Larsen EH, Lobinski R, Burger-Meijer K, Hansen M, Ruzik R, Mazurowska L, Rasmussen PH, Sloth JJ, Scholten O, Kik C (2006) Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem 385:1098–1108PubMedCrossRefGoogle Scholar
  116. Leisova-Svobodova L, Karlova-Smekalova K (2011) Detection of garlic viruses using SYBR Green real-time reverse transcription-polymerase chain reaction. J Phytopathol 159:429–434CrossRefGoogle Scholar
  117. Lot H, Chovelon V, Souche S, Delecolle B (1998) Effects of onion yellow dwarf and leek yellow stripe viruses on symptomatology and yield loss of three French cultivars. Plant Dis 82:1381–1385CrossRefGoogle Scholar
  118. Lunello P, Ducasse D, Conci V (2005) Improved PCR detection of potyviruses in Allium species. Eur J Plant Pathol 112:371–378CrossRefGoogle Scholar
  119. Lynch P, Souch G, Trigwell S, Keller J, Harding K (2011) Plant cryopreservation: from laboratory to genebank. Asia Pac J Mol Biol Biotechnol 18:239–242Google Scholar
  120. Lynch PT, Souch GR, Harding K (2012) Effects of post-harvest storage of Allium sativum bulbs on the cryopreservation of stem-discs by encapsulation/dehydration. J Hortic Sci Biotechnol 87:588–592CrossRefGoogle Scholar
  121. Lynch P, Souch GR, Zámečník J, Harding K (2016) Optimization of water content for the cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters 37:308–317PubMedGoogle Scholar
  122. Maaß HI, Klaas M (1995) Infraspecific differentiation of garlic (Allium sativum L) by isozyme and RAPD markers. Theor Appl Genet 91:89–97PubMedCrossRefGoogle Scholar
  123. Maggioni L, Keller J, Astley D (2002) European collections of vegetatively propagated Allium. Report of a workshop, 21–22 May 2001, Gatersleben, Germany. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  124. Makowska Z, Keller J, Engelmann F (1999) Cryopreservation of apices isolated from garlic (Allium sativum L.) bulbils and cloves. CryoLetters 20:175–182Google Scholar
  125. Mazur P (1965) The role of cell membranes in the freezing of yeast and other single cells. Ann NY Acad Sci 125:658–676. Scholar
  126. Mazur P, Schmidt JJ (1968) Interactions of cooling velocity, temperature, and warming velocity on the survival of frozen and thawed yeast. Cryobiology 5:1–17PubMedCrossRefGoogle Scholar
  127. Messiaen CM, Cohat J, Leroux JP, Pichon M, Beyries A (1993) Les allium alimentaires reproduits par voie vegetative. INRA, ParisGoogle Scholar
  128. Moriconi DN, Conci VC, Nome SF (1990) Rapid multiplication of garlic (Allium sativum L.) in vitro. Phyton (Argentina) 51:145–151Google Scholar
  129. Nirmal Babu K, Yamuna G, Praveen K, Minoo D, Ravindran PN, Peter KV (2012) Cryopreservation of spices genetic resources. In: Katkov I (ed) Current frontiers in cryobiology, pp 457–484, InTech, Available from Scholar
  130. Niwata E (1995) Cryopreservation of apical meristems of garlic (Allium sativum L.) and high subsequent plant regeneration. CryoLetters 16:102–107Google Scholar
  131. Nomura Y, Oosawa K (1990) Production of interspecific hybrids between Allium chinense and A. thunbergii by in ovulo embryo culture. Jpn J Breed 40:531–535CrossRefGoogle Scholar
  132. Nomura Y, Maeda M, Tsuchiya T, Makara K (1994) Efficient production of interspecific hybrids between Allium chinense and edible Allium spp. through ovary culture and pollen storage. Breed Sci 44:151–155Google Scholar
  133. Ohsumi C, Kojima A, Hinata K, Etoh T, Hayashi T (1992) Interspecific hybrid between Allium cepa and Allium sativum. Theor Appl Genet 85:969–975Google Scholar
  134. Petrzelova I, Doležalová I, Dušková E, Hýbl M, Kopecký P, Stavělíková H, Dušek K (2016) Collection of landraces of vegetables and wild ecotypes of medicinal, aromatic and culinary plants (MAPs) In: Papoušková L (ed) Racionální rozšiřování kolekcí v rámci Národního programu rostlin. CRI, Prague, pp 65–76 (in Czech)Google Scholar
  135. Phillips GC, Hubstenberger JF (1987) Plant regeneration in vitro of selected Allium spp. and interspecific hybrids. HortScience 22:124–125Google Scholar
  136. Pinto da Cunha C, Vilela Resende F, Zucchi MI, Pinheiro JB (2014) SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica 142:419–431CrossRefGoogle Scholar
  137. Pistrick K, Knüpffer H (2013) DFG project on IPK Herbarium digitalization. IPK J 22:12Google Scholar
  138. Popova E, Shukla M, Kim H-H, Saxena PK (2015) Plant cryopreservation for biotechnology and breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer International Publishing Switzerland,, pp 63–93CrossRefGoogle Scholar
  139. Rabinowitch HD, Brewster JL (eds) (1990) Onions and allied crops, botany physiology and genetics, vol 1. CRC Press, Boca Raton, FloridaGoogle Scholar
  140. Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. Handbooks for genebanks No 8. Bioversity International, Rome, Italy. ISBN 978-92-9043-740-6Google Scholar
  141. Reed B (ed) (2008) Plant cryopreservation. A practical guide. Springer Science + Business Media LLC, ISBN 978-0-387-72275-7Google Scholar
  142. Sackville Hamilton NR, Chorlton KH (1997) Regeneration of accession in seed collections: a decision guide. Handbooks for genebanks No. 5, IPGRI, RomeGoogle Scholar
  143. Schäfer-Menuhr A, Müller E, Mix-Wagner G (1996) Cryopreservation: an alternative for the long-term storage of old potato varieties. Potato Res 39:507–513CrossRefGoogle Scholar
  144. Scholten OE, van Heusden AW, Khrustaleva LI, Burger-Meijer K, Mank RA, Antonise RGC, Harrewijn JL, Van Haecke W, Oost EH, Peters RJ, Kik C (2007) The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 156:345–353CrossRefGoogle Scholar
  145. Scholten OE, Van Kaauwen MPW, Shahin A, Hendrickx PM, Keizer LCP, Burger K, Van Heusden AW, Van der Linden CG, Vosman B (2016) SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol 16:187–196PubMedPubMedCentralCrossRefGoogle Scholar
  146. Senula A, Keller ERJ (2002) Germplasm exchange of vegetative alliums—minimum phytosanitary requirements. In: Maggioni L, Keller J, Astley D (eds) European collections of vegetatively propagated Allium. Report Workshop Gatersleben, Germany, May 21–22, 2001. IPGRI, Rome, pp 66–71Google Scholar
  147. Senula A, Keller ERJ (2014) Pollen cryopreservation to support maintenance of a wild species collection of the genus Allium. Acta Hortic 1039:289–296CrossRefGoogle Scholar
  148. Senula A, Keller ERJ, Lesemann DE (2000) Elimination of viruses through meristem culture and thermotherapy for the establishment of an in vitro collection of garlic (Allium sativum). Acta Hortic 530:121–128CrossRefGoogle Scholar
  149. Senula A, Büchner D, Keller ERJ (2010) Dehydrating pretreatment, water relations and survival of shallot shoot tips from field and in vitro culture (Abstr.). Cryobiology 61:400CrossRefGoogle Scholar
  150. Siess MH, Le Bon AM, Teyssier C, Belloir C, Singh V, Bergès R (2007) Garlic and cancer. Med Aromat Plant Sci Biotechnol 1:31–36Google Scholar
  151. Shemesh-Mayer E, Ben-Michael T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R (2015) Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. Front Plant Sci 6:271. Scholar
  152. Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) The handbook of plant breeding—vegetables II: Fabaceae, Liliaceae, Solanaceae and Umbelliferae. Springer, New York, pp 121–159Google Scholar
  153. Singh AK, Varaprasad KS, Venkateswara K (2012) Conservation costs of plant genetic resources for food and agriculture: seed genebanks. Agric Res 1:223–239. Scholar
  154. Smékalová K, Stavlíkova H, Dušek K (2010) Distribution of viruses in the garlic germplasm collection of the Czech Republic. J Plant Pathol 92:273–274Google Scholar
  155. Song P, Peffley EB (1994) Plant regeneration from suspension cultures of Allium fistulosum and an A. fistulosum × A. cepa interspecific hybrid. Plant Sci 98:63–68CrossRefGoogle Scholar
  156. Souch GR (2006) Long-term conservation of Allium germplasm resources; the cryopreservation of A. sativum using an encapsulation/dehydration approach. Dissertations University of Derby, UKGoogle Scholar
  157. Sudarmonowati E (2001) Cryopreservation of garlic (Allium sativum) cv. Lumbu Hijau using vitrification technique. Ann Bogor 8:39–47Google Scholar
  158. van der Valk P, Scholten OE, Verstappen F, Jansen RC, Dons JJM (1992) High frequency somatic embryogenesis and plant regeneration from zygotic embryo-derived callus cultures of three Allium species. Plant Cell Tiss Org 30:181–191CrossRefGoogle Scholar
  159. van Hintum T, van Treuren R (2012) Reliability of germination testing of ex situ conserved seeds: a genebank case study on outsourced analyses. Plant Genet Resour 10:134–136CrossRefGoogle Scholar
  160. van Raamsdonk LWD, Vrielink-van Ginkel M, Kik C (2000) Phylogeny reconstruction and hybrid analysis in Allium subgenus Rhizirideum. Theor Appl Genet 100:1000–1009CrossRefGoogle Scholar
  161. van Raamsdonk LWD, Ensink W, van Heusden AW, Vrielink-van Ginkel M, Kik C (2003) Biodiversity assessment based on cpDNA and crossability analysis in selected species of Allium subgenus Rhizirideum. Theor Appl Genet 107:1048–1058PubMedCrossRefGoogle Scholar
  162. van Treuren R, de Groot EC, van Hintum TJL (2013) Preservation of seed viability during 25 years of storage under standard genebank conditions. Genet Resour Crop Evol 60:1407–1421CrossRefGoogle Scholar
  163. Verbeek M, Van Dijk P, Van Well PMA (1995) Efficiency of eradication of four viruses from garlic (Allium sativum) by meristem-tip culture. Eur J Plant Pathol 101:231–239CrossRefGoogle Scholar
  164. Vieira RL, da Silva AL, Zaffari GR, Steinmacher DA, Pacheco de Freitas Fraga H, Guerra MP (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips Acta Physiol Plant 37:1733.
  165. Volk GM, Henk AD, Richards CM (2004a) Genetic diversity among U.S. garlic clones as detected using AFLP methods. J Am Soc Hortic Sci 129:559–569Google Scholar
  166. Volk GM, Maness N, Rotindo K (2004b) Cryopreservation of garlic (Allium sativum L.) using plant vitrification solution 2. CryoLetters 25:219–226PubMedGoogle Scholar
  167. Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryopreservation. Cryobiology 52:48–61PubMedCrossRefGoogle Scholar
  168. Walkey DGA, Webb MJ, Bolland CJ, Miller A (1987) Production of virus-free garlic (Allium sativum L.) and shallot (A. ascalonicum L.) by meristem-tip culture. J Hortic Sci 62:211–220CrossRefGoogle Scholar
  169. Walters C (2004) Principles for preserving germplasm in gene banks. In: Guerrant Jr, EO, Havens K, Maunder M (eds) Ex situ plant conservation. Supporting species survival in the world. Island Press, Washington, pp 113–138Google Scholar
  170. Wang QC, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363CrossRefGoogle Scholar
  171. Weise S, Oppermann M, Maggioni L, van Hintum T, Knüpffer H (2017) EURISCO: the European search catalogue for plant genetic resources. Nucleic Acids Res 45(D1):D1003–D1008. Scholar
  172. Zámečník J (2002) Cryopreservation at the research institute of crop production, Czech Republic. In: Maggioni L, Keller J, Astley D (eds) European collections of vegetatively propagated Allium. Report Workshop Gatersleben, Germany, May 21–22, 2001, IPGRI, Rome, pp 82–87Google Scholar
  173. Zámečník J, Faltus M (2014) Physiological and biophysical responses of plants under low and ultralow temperatures. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Boca Raton, London, pp 557–584Google Scholar
  174. Zámečník J, Šesták J (2011) Constrained states occurring in plants cryo-processing and the role of biological glasses. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials, Hot topics in thermal analysis and calorimetry, vol 8. Springer Science + Business Media BV,, pp 291–310Google Scholar
  175. Zámečník J, Grospietsch M, Bilavčík A (2001) Dehydration and glass transition of encapsulated garlic shoot tips. Cryobiology 43:328–329Google Scholar
  176. Zámečník J, Faltus M, Bilavčík A (2007) Cryoprotocols used for cryopreservation of vegetatively propagated plants in the Czech cryobank. Adv Hortic Sci 21:247–250Google Scholar
  177. Zámečník J, Faltus M, Bilavčík A (2012) Comparison of cryopreservation methods of vegetatively propagated crops based on thermal analysis. In: Katkov I (ed) Current frontiers in cryopreservation. InTech Open Science, Rijeka, Croatia, pp 333–358Google Scholar
  178. Zanke C, Zámečník J, Kotlińska T, Olas M, Keller ERJ (2011) Cryopreservation of garlic for the establishment of a European core collection. Acta Hortic 908:431–438CrossRefGoogle Scholar
  179. Zheng S-J, Henken B, Ahn Y-K, Krens FA, Kik C (2004) The development of a reliable transformation protocol for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm. Mol Breed 14:293–307CrossRefGoogle Scholar
  180. Zheng S-J, Henken B, de Maagd RA, Purwito A, Krens FA, Kik C (2005) Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.). Transgenic Res 14:261–272PubMedCrossRefGoogle Scholar
  181. Zheng S-J, Kamenetsky R, Féréol L, Barandiaran X, Rabinowitch HD, Chovelon V, Kik C (2007) Garlic breeding system innovations. Med Aromat Plant Sci Biotechnol 1:6–15Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland, OT GaterslebenGermany
  2. 2.Centre for Genetic Resources, the Netherlands (CGN)Wageningen University and ResearchWageningenThe Netherlands

Personalised recommendations