Skip to main content

Anatomy and Physiology of Retina and Posterior Segment of the Eye

Abstract

The fact that the retina is readily accessible has a key role in constructing visual images and interacting with the environment and that most of the sensory input is of visual nature affirms the significance of investigative exploration of this part of the visual system. The goal of this work is to recognize the unique cellular characteristics and the neural circuitry of the retina in the posterior segment in primates. To that end an attempt has been made we have attempted to examine the retinal pigment epithelium and its role in the barrier system and the metabolic activity of the retina. We also discussed the characteristics of the photoreceptors and the foveal structure with associated reflexes. The blood flow and associated regulatory mechanisms as well as laminar organization of the optic disc have been explored.

Keywords

  • RPE
  • Optic disc
  • Fovea
  • Hyaloid
  • Photopic
  • Scotopic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95807-1_1
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95807-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  1. Sadler TW. Langman’s medical embryology. 11th ed. Baltimore, MD: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2010. p. 335–44.

    Google Scholar 

  2. Moore K. Essentials of human embryology. St. Louis, MO: The C.V. Mosby; 1988. p. 170–4.

    Google Scholar 

  3. Davis N, Mor E, Ashery-Padan R. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27. Development. 2011;138(1):127–38.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Duke-Elder S, Cook C. Normal and abnormal development. Part 1. Embryology. In: Duke-Elder S, editor. System of ophthalmology, vol. 3. London: Henry Kimpton; 1963. p. 190–201.

    Google Scholar 

  5. Fieß A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, Bauer J. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 years of age. BMC Ophthalmol. 2017;17(1):228.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Sharma RK, Ehinger BEJ. Development and structure of the retina. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 319–47.

    Google Scholar 

  7. Hartnett M. Pediatric retina. Philadelphia, PA: Lippincott Williams & Wilkins; 2014. p. 710–3.

    Google Scholar 

  8. Davis RJ, Alam NM, Zhao C, Müller C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep. 2017;9(1):42–9.

    CAS  CrossRef  Google Scholar 

  9. Panda-Jonas S, Jonas JB, Jakobczk-Zmija M. Retinal pigment epithelial cell count, distribution and correlations in normal human eyes. Am J Ophthalmol. 1996;121:181–9.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Boulton M, Dayhaw-Barker P. The role of the retinal epithelium: topographical variation and ageing changes. Eye. 2001;15:384–9.

    CAS  PubMed  CrossRef  Google Scholar 

  11. La Cour M. The retinal pigment epithelium. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 348–57.

    Google Scholar 

  12. Mander KA, Finnie JW. Loss of Endothelial Barrier Antigen Immunoreactivity in Rat RetinalMicrovessels is Correlated with Clostridium perfringens Type D Epsilon Toxin-induced Damage to the Blood-Retinal Barrier. J Comp Pathol. 2018;158:51.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Rev Exp Eye Res. 2004;78:715–21.

    CAS  CrossRef  Google Scholar 

  14. Davson H. The aqueous humour and the intraocular pressure (chapter 1). In: Davson H, editor. Physiology of the eye. 5th ed. London: Macmillan; 1990. p. 3–95.

    CrossRef  Google Scholar 

  15. Thumann G, Hoffmann S, Hinton DR. Cell biology of the retinal pigment epithelium. In: Ryan SJ, editor. Retina. 4th (ed) ed. St. Louis: Elsevier-Mosby; 2006. p. 137–52.

    CrossRef  Google Scholar 

  16. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Kanski JJ, Milewski SA. Introduction. In: Kanski JJ, Milewski SA, editors. Diseases of the macula. St Louis: Mosby; 2002. p. 1–18.

    Google Scholar 

  18. Pleyer U, Pohlmann D. Anatomy and immunology of the eye. Z Rheumatol. 2017;76(8):656–63.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Moustafa MT, Ramirez C, Schneider K, Atilano SR, Limb GA, Kuppermann BD, Kenney MC. Protective Effects of Memantine on Hydroquinone-Treated Human Retinal Pigment Epithelium Cells and Human Retinal Müller Cells. J Ocul Pharmacol Ther. 2017;33(8):610–9.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985;60(4):327–46.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. J Am Med Assoc. 2003;290(15):2057–60.

    CAS  CrossRef  Google Scholar 

  22. Lightman S, Towler HMA. Diabetic retinopathy. Clin Cornerstone. 2003;5(2):12–21.

    PubMed  CrossRef  Google Scholar 

  23. Berlanga-Acosta J, Mendoza-Mari Y, Martínez MD, Valdés-Perez C, Ojalvo AG, Armstrong DG. Expression of cell proliferation cycle negative regulators in fibroblasts of an ischemic diabetic foot ulcer. A clinical case report. Int Wound J. 2013;2:232–6.

    CrossRef  Google Scholar 

  24. Bates NM, Tian J, Smiddy WE, Lee WH, Somfai GM, Feuer WJ, Shiffman JC, Kuriyan AE, Gregori NZ, Kostic M, Pineda S, Cabrera DeBuc D. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. Sci Rep. 2018;8(1):5355.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  25. Tong L, Vernon SA, Kiel W, Sung V, Orr GM. Association of macular involvement with proliferative retinopathy in type 2 diabetes. Diabet Med. 2001;18(5):388–94.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Dowling JE. Retinal neurophysiology. In: Albert DA, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: Saunders; 2000. p. 1713–29.

    Google Scholar 

  27. Lerner AB, Fitzpatrick TB, Calkins E, et al. Mammalian tyrosinase; the relationship of copper to enzymatic activity. J Biol Chem. 1950;187:793–802.

    CAS  PubMed  Google Scholar 

  28. Morrison R, Mason K, Frost-Mason S. A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data. Pigment Cell Res. 1994;7(6):388–93.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Nusliha A, Dalpatadu U, Amarasinghe B, Chandrasinghe PC, Deen KI. Congenital hypertrophy of retinal pigment epithelium (CHRPE) in patients with familial adenomatous polyposis (FAP); a polyposis registry experience. BMC Res Notes. 2014;7:734.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  30. Georgalas I, Paraskevopoulos T, Symmeonidis C, Petrou P, Koutsandrea C. Peripheral sea-fan retinal neovascularization as a manifestation of chronic rhegmatogenous retinal detachment and surgical management. BMC Ophthalmol. 2014;14:112.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Levin LA. Optic nerve. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 603–38.

    Google Scholar 

  32. Tessier-Lavigne M. Visual processing by the retina. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 507–22.

    Google Scholar 

  33. Gallivan JP, Goodale MA. The dorsal "action" pathway. Handb Clin Neurol. 2018;151:449–66.

    PubMed  CrossRef  Google Scholar 

  34. Roof DJ, Makino CL. The structure and function of retinal photoreceptors. In: Albert DA, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: Saunders; 2000. p. 1624–73.

    Google Scholar 

  35. Larsson J, Harrison C, Jackson J, Oh SM, Zeringyte V. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data. J Neurophysiol. 2017;117(2):818–35.

    PubMed  CrossRef  Google Scholar 

  36. Williams TD, Wilkinson JM. Position of the fovea centralis with respect to the optic nerve head. Optom Vis Sci. 1992;69:369–77.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol. 2017;595(16):5495–506.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Isenberg SJ. Macular development in the premature infant. Am J Ophthalmol. 1986;101:74–80.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Sjöstrand J, Rosén R, Nilsson M, Popovic Z. Arrested Foveal development in preterm eyes: thickening of the outer nuclear layer and structural redistribution within the fovea. Invest Ophthalmol Vis Sci. 2017;58(12):4948–58.

    PubMed  CrossRef  Google Scholar 

  40. Hendrickson AE. Primate foveal development: a microcosm of current questions in neurobiology. Recent developments. Invest Ophthalmol Vis Sci. 1994;35:3129–33.

    CAS  PubMed  Google Scholar 

  41. Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, Starostik MR, Gieser L, La Torre A, Nishio M, Bates O, Walton A, Bermingham-McDonogh O, Glass IA, Wong ROL, Swaroop A, Reh TA. Molecular anatomy of the developing human retina. Dev Cell. 2017;43(6):763–79.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Callaway EM. Structure and function of parallel pathways in the primate early visual system. J Physiol. 2005;566:13–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190–4.

    PubMed  PubMed Central  Google Scholar 

  44. Burgi PY, Grzywacz NM. Model for the pharmacological basis of spontaneous synchronous activity in developing retinas. J Neurosci. 1994;14(12):7426–39.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Wang M, Jin Q, Wang H, Baniasadi N, Elze T. Quantifying positional variation of retinal blood vessels in glaucoma. PLoS One. 2018;13(3):e0193555.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Zhu M, Madigan MC, Van Driel D, Maslim J, Billson F, Provis JM, Penfold PL. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70:767–76.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Capelanes NC, Diniz AV, Magalhães ÉP, Marques KO. Comparisons of retinal nerve fiber layer thickness changes after macular hole surgery. Arq Bras Oftalmol. 2018;81(1):37–41.

    PubMed  CrossRef  Google Scholar 

  48. Provis JM. Development of the primate retinal vasculature. Prog Ret Eye Res. 2001;20:799–821.

    CAS  CrossRef  Google Scholar 

  49. Lee KM, Choung HK, Kim M, Oh S, Kim SH. Positional change of optic nerve head vasculature during axial elongation as evidence of Lamina Cribrosa shifting: Boramae myopia cohort study report 2. Ophthalmology. 2018;pii: S0161–6420(17):32694–5.

    Google Scholar 

  50. Horn FK, Mardin CY, Viestenz A, Jünemann AG. Association between localized visual field losses and thickness deviation of the nerve fiber layer in glaucoma. J Glaucoma. 2005;14(6):419–25.

    PubMed  CrossRef  Google Scholar 

  51. Hogan MJ, Alvarado JA, Weddell JE. Retina. In: Histology of the human eye. An atlas and textbook, vol. 57. Philadelphia: Saunders; 1971. p. 393–521.

    Google Scholar 

  52. Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM, Virgili G. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;11:CD008803.

    PubMed Central  Google Scholar 

  53. Erwin E, Baker FH, Busen WF, Malpeli JG. Relationship between laminar topology and retinotopy in the rhesus lateral geniculate nucleus: results from a functional atlas. J Comp Neurol. 1999;407(1):92–102.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Fitzgibbon T. The human fetal retinal nerve fiber layer and optic nerve head: a DiI and DiA tracing study. Vis Neurosci. 1997;14:433–47.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Akahori T, Iwase T, Yamamoto K, Ra E, Terasaki H. Changes in choroidal blood flow and morphology in response to increase in intraocular pressure. Invest Ophthalmol Vis Sci. 2017;58(12):5076–85.

    PubMed  CrossRef  Google Scholar 

  56. Ranjan R, Manayath GJ, Avadhani U, Narendran V. Rapid macular hole formation and closure in a vitrectomized eye following rhegmatogenous retinal detachment repair. Oman J Ophthalmol. 2018;11(1):71–4.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Newell F. Anatomy and embryology. In: Newell F, editor. Ophthalmology. Principles and concepts. 8th ed. St. Louis: Mosby; 1996. p. 3–73.

    Google Scholar 

  58. Fouquet S, Vacca O, Sennlaub F, Paques M. The 3D retinal capillary circulation in pigs reveals a predominant serial organization. Invest Ophthalmol Vis Sci. 2017;58(13):5754–63.

    PubMed  CrossRef  Google Scholar 

  59. Vicol AD, Bogdănici T, Bogdănici C. Retinal vascular changes--predictive and prognostic factor in systemic disease. Oftalmologia. 2014;58(1):18–26.

    PubMed  Google Scholar 

  60. Chen TL, Yarng SS. Vitreous hemorrhage from a persistent hyaloid artery. Vitreous hemorrhage from a persistent hyaloid artery. Retina. 1993;13(2):148–51.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Struijker-Boudier HAJ. Retinal microcirculation and early mechanisms of hypertension. Hypertension. 2008;51:821–2.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Olver JM, McCartney ACE. Orbital and ocular microvascular corrosion casting in man. Eye. 1989;3:588–96.

    PubMed  CrossRef  Google Scholar 

  63. Olver JM, Spalton DJ, McCartney ACE. Microvascular study of the retrolaminar optic nerve in man: the possible significance on anterior ischaemic optic neuropathy. Eye. 1990;4:7–24.

    PubMed  CrossRef  Google Scholar 

  64. Takkar B, Azad S, Shakrawal J, Gaur N, Venkatesh P. Blood flow pattern in a choroidal hemangioma imaged on swept-source-optical coherence tomography angiography. Indian J Ophthalmol. 2017;65(11):1240–2.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Mitchell P. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J Hypertens. 2004;22:1543–9.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Paques M, Tadayoni R, Sercombe R, Laurent P, Genevois O, Gaudric A, Vicaut E. Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci. 2003;44(11):4960–7.

    PubMed  CrossRef  Google Scholar 

  67. Conway MD, Stern E, Enfield DB, Peyman GA. Management of cataract in uveitis patients. Curr Opin Ophthalmol. 2018;29(1):69–74.

    PubMed  CrossRef  Google Scholar 

  68. Brennan N, Petrou P, Reekie I, Pasu S, Kinsella M, Da Cruz L. Vitrectomy in phacoanaphylactic glaucoma secondary to posterior capsular rupture in an adult with persistent hyperplastic primary vitreous. Retin Cases Brief Rep. 2018;12(2):103–5.

    PubMed  CrossRef  Google Scholar 

  69. Moore AT, Michaelides M. Vitreous (chapter 49). In: Taylor D, Hoyt CS, editors. Pediatric ophthalmology and strabismus. 3rd ed. Edinburgh: Elsevier Saunders; 2005. p. 472–85.

    Google Scholar 

  70. Fielder AR, Quinn GE. Retinopathy of prematurity (chapter 51). In: Taylor D, Hoyt CS, editors. Pediatric ophthalmology and strabismus. 3rd ed. Edinburgh: Elsevier Saunders; 2005. p. 506–30.

    Google Scholar 

  71. Nicholson L, Vazquez-Alfageme C, Patrao NV, Triantafyllopolou I, Bainbridge JW, Hykin PG, Sivaprasad S. Retinal nonperfusion in the posterior pole is associated with increased risk of neovascularization in central retinal vein occlusion. Am J Ophthalmol. 2017;182:118–25.

    PubMed  CrossRef  Google Scholar 

  72. Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Ret Eye Res. 2003;22:95–111.

    CAS  CrossRef  Google Scholar 

  73. McLeod DS, Baba T, Bhutto IA, Lutty GA. Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye. Graefes Arch Clin Exp Ophthalmol. 2012;250(6):839–48.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Strittmatter K, Pomeroy H, Marneros AG. Targeting platelet-derived growth factor receptor β(+) scaffold formation inhibits choroidal neovascularization. Am J Pathol. 2016;186(7):1890–9.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Kim SJ, Campbell JP, Ostmo S, Jonas KE, Chan RVP, Chiang MF. Imaging and informatics in retinopathy of prematurity (i-ROP) research consortium. Changes in relative position of choroidal versus retinal vessels in preterm infants. Invest Ophthalmol Vis Sci. 2017;58(14):6334–41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res. 2018;63:1–19.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Öner A. Recent advancements in gene therapy for hereditary retinal dystrophies. Turk J Ophthalmol. 2017;47(6):338–43.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Chow LC, Wright KW, Sola A. The CSMC oxygen administration study group: can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111:339–45.

    PubMed  CrossRef  Google Scholar 

  79. Kalaie S, Gooya A. Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Comput Methods Prog Biomed. 2017;151:139–49.

    CrossRef  Google Scholar 

  80. Oyster C. The retina in vivo and the optic nerve (chapter 16). In: Oyster C, editor. The human eye – structure and function. Sunderland, MA: Sinauer Associates; 1999. p. 701–51.

    Google Scholar 

  81. Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.

    PubMed  CrossRef  Google Scholar 

  82. Murphy L, Carroll G. Acute bilateral retinal artery occlusion causing sudden blindness in 25-year-old patient. Am J Emerg Med. 2018;pii: S0735–6757(18):30204–3.

    Google Scholar 

  83. Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, Cutler NE, Houston SK, Munk MR, Fawzi AA, Mehta S, Hubschman JP, Ho AC, Sarraf D. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160(1):26–34.e1.

    PubMed  CrossRef  Google Scholar 

  84. Bagheri N, Mehta S. Acute vision loss. Prim Care. 2015;42(3):347–61.

    PubMed  CrossRef  Google Scholar 

  85. Kita Y, Inoue M, Kita R, Sano M, Orihara T, Itoh Y, Hirota K, Koto T, Hirakata A. Changes in the size of the foveal avascular zone after vitrectomy with internal limiting membrane peeling for a macular hole. Jpn J Ophthalmol. 2017;61(6):465–71.

    PubMed  CrossRef  Google Scholar 

  86. Goldmann EE. Vitalfärbung am Zentralnervensystem. Abhandl Königl Preuss Akad Wiss. 1913;1:1–60.

    Google Scholar 

  87. Harris A, Ciulla TA, Chung HS, Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol. 1998;116:1491–5.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Funk RHW. Blood supply of the retina. Ophthalmic Res. 1997;29:320–5.

    CAS  PubMed  CrossRef  Google Scholar 

  89. Delaey C, Van de Voorde J. Regulatory mechanisms in the retinal and choroidal circulation. Rev Ophthalmic Res. 2000;32:249–56.

    CAS  CrossRef  Google Scholar 

  90. Hao H, Sasongko MB, Wong TY, Che Azemin MZ, Aliahmad B, Hodgson L, Kawasaki R, Cheung CY, Wang JJ, Kumar DK. Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci. 2012;53(9):5799–805.

    PubMed  CrossRef  Google Scholar 

  91. Hossler FE, Olson KR. Microvasculature of the avian eye: studies on the eye of the duckling with microcorrosion casting, scanning electron microscopy, and stereology. Am J Anat. 1984;170(2):205–21.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Daxer A. The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr Eye Res. 1993;12:1103–9.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Wilson C, Theodorou M, Cocker KD, Fielder A. The temporal retinal blood vessels and preterm birth. Br J Ophthalmol. 2006;90(6):702–4.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  94. Girkin CA, Fazio MA, Yang H, Reynaud J, Burgoyne CF, Smith B, Wang L, Downs JC. Variation in the three-dimensional Histomorphometry of the normal human optic nerve head with age and race: Lamina Cribrosa and Peripapillary scleral thickness and position. Invest Ophthalmol Vis Sci. 2017;58(9):3759–69.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Kanski JJ, Nischal KK. The optic disc. In: Ophthalmology. Clinical signs and differential diagnosis. St Louis: Mosby; 1999. p. 247–85.

    Google Scholar 

  96. Varma R, Douglas GR, Steinmann WC, Wijsman K, Mawson D, Spaeth GL. A comparative evaluation of three methods of analyzing optic disc topography. Ophthalmic Surg. 1989;20(11):813–9.

    CAS  PubMed  Google Scholar 

  97. Abalo-Lojo JM, Treus A, Arias M, Gómez-Ulla F, Gonzalez F. Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. Mult Scler Relat Disord. 2018;19:124–8.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Mataki N, Tomidokoro A, Araie M, Iwase A. Morphology of the optic disc in the Tajimi study population. Jpn J Ophthalmol. 2017;61(6):441–7.

    PubMed  CrossRef  Google Scholar 

  99. Jurišić D, Novak Lauš K, Sesar I, Kuzman T. Comparison of optic nerve head morphology in patients with primary open angle glaucoma and non-arteritic anterior ischemic optic neuropathy. Acta Clin Croat. 2017;56(2):227–35.

    PubMed  CrossRef  Google Scholar 

  100. Ballae Ganeshrao S, Turpin A, McKendrick AM. Sampling the visual field based on individual retinal nerve fiber layer thickness profile. Invest Ophthalmol Vis Sci. 2018;59(2):1066–74.

    PubMed  CrossRef  Google Scholar 

  101. Roth G, Grunwald W, Dicke U. Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. J Comp Neurol. 2003;461(1):91–110.

    PubMed  CrossRef  Google Scholar 

  102. Jonas J, Garway-Heath T. Primary glaucomas: optic disc features. In: Hitchings RA, editor. Glaucoma. London: BMJ books; 2000. p. 29–38.

    Google Scholar 

  103. Yu PK, Balaratnasingam C, Morgan WH, Cringle SJ, McAllister IL, Yu DY. The structural relationship between the microvasculature, neurons, and glia in the human retina. Invest Ophthalmol Vis Sci. 2010;51(1):447–58.

    PubMed  CrossRef  Google Scholar 

  104. Anderson DR. Ultrastructure of the optic nerve head. Arch Ophthalmol. 1970;83(1):63–73.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Cohen AI. New evidence supporting the linkage to extracellular space of outer segment saccules of frog cones but not rods. J Cell Biol. 1968;37(2):424–44.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Anderson DR. Ultrastructure of human a, d monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82(6):800–14.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Mokhtari M, Rabbani H, Mehri-Dehnavi A, Kafieh R. Exact localization of breakpoints of retinal pigment epithelium in optical coherence tomography of optic nerve head. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:1505–8.

    PubMed  Google Scholar 

  108. Li D, Li T, Paschalis EI, Wang H, Taniguchi EV, Choo ZN, Shoji MK, Greenstein SH, Brauner SC, Turalba AV, Pasquale LR, Shen LQ. Optic nerve head characteristics in chronic angle closure glaucoma detected by swept-source OCT. Curr Eye Res. 2017;42(11):1450–7.

    PubMed  CrossRef  Google Scholar 

  109. Duke-Elder S, Wybar KC. System of ophthalmology, the anatomy of the visual system, vol. 2. London: Kimpton; 1961. p. 286–93.

    Google Scholar 

  110. Na KI, Lee WJ, Kim YK, Park KH, Jeoung JW. Evaluation of retinal nerve Fiber layer thinning in myopic glaucoma: impact of optic disc morphology. Invest Ophthalmol Vis Sci. 2017;58(14):6265–72.

    PubMed  CrossRef  Google Scholar 

  111. Levitzky M, Henkind P. Angioarchitecture of the optic nerve. II Lamina cribrosa. Am J Ophthalmol. 1969;68(6):986–96.

    CAS  PubMed  CrossRef  Google Scholar 

  112. Bron AJ, Tripathi RC, Tripathy BJ. Optic nerve, section 15.1. Wolff’s anatomy of the eye and orbit. 8th ed. London: Chapman & Hall; 1997. p. 489–535.

    Google Scholar 

  113. Büssow H. The astrocytes in the retina and optic nerve head of mammals: a special glia for the ganglion cell axons. Cell Tissue Res. 1980;206(3):367–78.

    PubMed  CrossRef  Google Scholar 

  114. Cohen AI. Ultrastructural aspects of the human optic nerve. Investig Ophthalmol. 1967;6(3):294–308.

    CAS  Google Scholar 

  115. Hondur G, Göktaş E, Al-Aswad L, Tezel G. Age-related changes in the peripheral retinal nerve fiber layer thickness. Clin Ophthalmol. 2018;12:401–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  116. Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, Podos SM, Mittag T. Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci. 2002;43(3):587–94.

    PubMed  Google Scholar 

  117. Krzyżanowska-Berkowska P, Melińska A, Helemejko I, Robert Iskander D. Evaluating displacement of lamina cribrosa following glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):791–800.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  118. Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. Arch Ophthalmol. 1981;99(12):2159–62.

    CAS  PubMed  CrossRef  Google Scholar 

  119. Liu B, Kilpatrick JI, Lukasz B, Jarvis SP, McDonnell F, Wallace DM, Clark AF, O'Brien CJ. Increased substrate stiffness elicits a Myofibroblastic phenotype in human Lamina CribrosaCells. Invest Ophthalmol Vis Sci. 2018;59(2):803–14.

    PubMed  CrossRef  Google Scholar 

  120. Bernstein SL, Meister M, Zhuo J, Gullapalli RP. Postnatal growth of the human optic nerve. Eye (Lond). 2016;30(10):1378–80.

    CAS  CrossRef  Google Scholar 

  121. Wong VK. Retinal venous occlusive disease. Hawaii Med J. 1997;56(10):289–91.

    CAS  PubMed  Google Scholar 

  122. Wu Z, Medeiros FA. Recent developments in visual field testing for glaucoma. Curr Opin Ophthalmol. 2018;29(2):141–6.

    PubMed  CrossRef  Google Scholar 

  123. Kline LB, Bajandas FJ. Visual fields. In: Kline LB, Bajandas FJ, editors. Neuro ophthalmology. Review manual. 5th ed. Thorofare: Slack; 2004. p. 1–45.

    Google Scholar 

  124. Masuda H, Mori M, Uzawa A, Muto M, Uchida T, Ohtani R, Akiba R, Yokouchi H, Yamamoto S, Kuwabara S. Recovery from optic neuritis attack in neuromyelitis optica spectrum disorder and multiple sclerosis. J Neurol Sci. 2016;367:375–9.

    PubMed  CrossRef  Google Scholar 

  125. Backner Y, Kuchling J, Massarwa S, et al. Anatomical wiring and functional networking changes in the visual system following optic neuritis. JAMA Neurol. 2018;75(3):287–95.

    PubMed  CrossRef  Google Scholar 

  126. Liu GT, Volpe NJ, Galetta SL. Vision loss: retinal disorders of neuro-ophthalmic interest. In: Liu GT, Volpe NJ, Galetta SL, editors. Neuro-ophthalmology. Diagnosis and management. Philadelphia: Saunders; 2001. p. 58–102.

    Google Scholar 

  127. Glisson CC. Visual loss due to optic chiasm and retrochiasmal visual pathway lesions. Continuum (Minneap Minn). 2014;20(4 Neuro-ophthalmology):907–21.

    Google Scholar 

  128. Zhao Y, Tan S, Chan TCY, Xu Q, Zhao J, Teng D, Fu H, Wei S. Clinical features of demyelinating optic neuritis with seropositive myelinoligodendrocyte glycoprotein antibody in Chinese patients. Br J Ophthalmol. 2018.; pii: bjophthalmol-2017-311177

    Google Scholar 

  129. Simpson HD, Kita EM, Scott EK. Goodhill GJ. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol. 2013;521(6):1409–29.

    PubMed  CrossRef  Google Scholar 

  130. Guillery RW. Developmental neurobiology: preventing midline crossings. Curr Biol. 2003;13:R871–2.

    CAS  PubMed  CrossRef  Google Scholar 

  131. Van Horck FPG, Weinl C, Holt CE. Retinal axon guidance: novel mechanisms for steering. Curr Opin Neurobiol. 2004;14:61–6.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  132. Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep. 2018 Mar 5;8(1):3979. https://doi.org/10.1038/s41598-018-22361-2.

  133. Rancic A, Filipovic N, Marin Lovric J, Mardesic S, Saraga-Babic M, Vukojevic K. Neuronal differentiation in the early human retinogenesis. Acta Histochem. 2017;119(3):264–72.

    CAS  PubMed  CrossRef  Google Scholar 

  134. Gonzalez-Fernandez F. Evolution of the visual cycle: the role of retinoid-binding proteins. J Endocrinol. 2002;175:75–88.

    CAS  PubMed  CrossRef  Google Scholar 

  135. Bock AS, Binda P, Benson NC, Bridge H, Watkins KE, Fine I. Resting-state retinotopic organization in the absence of retinal input and visual experience. J Neurosci. 2015;35(36):12366–82.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  136. He S, Dong W, Deng Q, Weng S, Sun W. Seeing more clearly: recent advances in understanding retinal circuitry. Science. 2003;302:408–11.

    CAS  PubMed  CrossRef  Google Scholar 

  137. Rasmussen RS, Schaarup AMH, Overgaard K. Therapist-assisted rehabilitation of visual function and hemianopia after brain injury: intervention study on the effect of the neuro vision technology rehabilitation program. JMIR Res Protoc. 2018;7(2):e65.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  138. van Wermeskerken M, van der Kamp J, Hoozemans MJ, Savelsbergh GJ. Catching moving objects: differential effects of background motion on action mode selection and movement control in 6- to 10-month-old infants. Dev Psychobiol. 2015;57(8):921–34.

    PubMed  CrossRef  Google Scholar 

  139. Yang J, Watanabe J, Kanazawa S, Nishida S, Yamaguchi MK. Infants' visual system nonretinotopically integrates color signals along a motion trajectory. J Vis. 2015;15(1):25.

    PubMed  CrossRef  Google Scholar 

  140. Birch EE. Stereopsis in infants and its developmental relation to visual acuity. In: Simons K, editor. Early visual development, normal and abnormal. New York/Oxford: Oxford University; 1993. p. 224–36.

    Google Scholar 

  141. Tu JH, Foote KG, Lujan BJ, Ratnam K, Qin J, Gorin MB, Cunningham ET Jr, Tuten WS, Duncan JL, Roorda A. Dysflective cones: visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis. Am J Ophthalmol Case Rep. 2017;7:14–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  142. Akbas E, Eckstein MP. Object detection through search with a foveated visual system. PLoS Comput Biol. 2017;13(10):e1005743.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  143. Kompaniez-Dunigan E, Abbey CK, Boone JM, Webster MA. Visual adaptation and the amplitude spectra of radiological images. Cogn Res Princ Implic. 2018;3(1):3.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  144. Norcia AM, Manny RE. Development of vision in infancy (chapter 21). In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 531–51.

    Google Scholar 

  145. Sakmar TP. Color vision (chapter 23). In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 578–85.

    Google Scholar 

  146. Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye (Lond). 2016;30(2):247–54.

    CAS  CrossRef  Google Scholar 

  147. Oide M, Okajima K, Nakagami H, Kato T, Sekiguchi Y, Oroguchi T, Hikima T, Yamamoto M, Nakasako M. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis. J Biol Chem. 2018;293(3):963–72.

    CAS  PubMed  CrossRef  Google Scholar 

  148. Foster RG, Wulff K. The rhythm of rest and excess. Nat Rev Neurosci. 2005;6:407–14.

    CAS  PubMed  CrossRef  Google Scholar 

  149. Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26:314–20.

    CAS  PubMed  CrossRef  Google Scholar 

  150. Vartanian GV, Zhao X, Wong KY. Using flickering light to enhance nonimage-forming visual stimulation in humans. Invest Ophthalmol Vis Sci. 2015;56(8):4680–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  151. Foster RG. Keeping an eye on the time. The Cogan lecture. Invest Ophthalmol Vis Sci. 2002;43:1286–98.

    PubMed  Google Scholar 

  152. Detwiler PB. Phototransduction in retinal ganglion cells. Yale J Biol Med. 2018;91(1):49–52.

    PubMed  PubMed Central  Google Scholar 

  153. Hannibal J, Fahrenkrug J. Melanopsin: a novel photopigment involved in the photoentrainment of the brain’s biological clock? Ann Med. 2002;34:401–7.

    CAS  PubMed  CrossRef  Google Scholar 

  154. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245–7.

    CAS  PubMed  CrossRef  Google Scholar 

  155. Qiu X, Kumbalsiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433:745–9.

    CAS  PubMed  CrossRef  Google Scholar 

  156. García-Ayuso D, Galindo-Romero C, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M, Villegas Pérez MP. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Exp Eye Res. 2017;161:10–6.

    PubMed  CrossRef  CAS  Google Scholar 

  157. Pepe IM. Recent advances in our understanding of rhodopsin and phototransduction. Prog Ret Eye Res. 2001;20:733–59.

    CAS  CrossRef  Google Scholar 

  158. Morshedian A, Fain GL. Light adaptation and the evolution of vertebrate photoreceptors. J Physiol. 2017;595(14):4947–60.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  159. Arshavsky VY, Lamb TD, Pugh EN Jr. G proteins and phototransduction. Annu Rev Physiol. 2002;64:153–87.

    CAS  PubMed  CrossRef  Google Scholar 

  160. Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M, Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M, Kamei Y, Naruse K, Yoshimura T. Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat Commun. 2017;8(1):412.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  161. Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: a new hypothesis. Med Hypotheses. 2016;96:20–9.

    PubMed  CrossRef  Google Scholar 

  162. Xiao M, Hendrickson A. Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J Comp Neurol. 2000;425:545–59.

    CAS  PubMed  CrossRef  Google Scholar 

  163. O’Brien KMB, Schulte D, Hendrickson AE. Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis. 2003;9:401–9.

    PubMed  Google Scholar 

  164. Glushakova LG, Timmers AM, Pang J, Teusner JT, William W. Hauswirth human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors. Invest Ophthalmol Vis Sci. 2006;47:3505–13.

    PubMed  CrossRef  Google Scholar 

  165. Kohl S, Biskup S. Genetic diagnostic testing in inherited retinal dystrophies. Klin Monatsbl Augenheilkd. 2013;230(3):243–6.

    CAS  PubMed  Google Scholar 

  166. Campa C, Gallenga CE, Bolletta E, Perri P. The role of gene therapy in the treatment of retinal diseases: a review. Curr Gene Ther. 2017;17(3):194–213.

    CAS  PubMed  CrossRef  Google Scholar 

  167. Weleber RG, Gregory-Evans K. Retinitis pigmentosa and allied disorders. In: Ryan SJ, editor. Retina. 4th ed. St. Louis: Elsevier-Mosby; 2006. p. 395–498.

    CrossRef  Google Scholar 

  168. Hargrave PA. Rhodopsin structure, function, and topography. The Friedenwald lecture. IOVS. 2001;42:3–9.

    CAS  Google Scholar 

  169. Omodaka K, An G, Tsuda S, Shiga Y, Takada N, Kikawa T, Takahashi H, Yokota H, Akiba M, Nakazawa T. Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters. PLoS One. 2017;12(12):e0190012.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  170. Chalupa LM, Günhan E. Development of On and Off retinal pathways and retinogeniculate projections. Prog Ret Eye Res. 2004;23:31–51.

    CrossRef  Google Scholar 

  171. Valdez DJ, Nieto PS, Díaz NM, Garbarino-Pico E, Guido ME. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J. 2013;27(7):2702–12.

    CAS  PubMed  CrossRef  Google Scholar 

  172. Freedman MS, Lucas RJ, Soni B, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:502–4.

    CAS  PubMed  CrossRef  Google Scholar 

  173. Van Gelder RN, Buhr ED. Ocular photoreception for circadian rhythm entrainment in mammals. Ann Rev Vis Sci. 2016;2:153–69.

    CrossRef  Google Scholar 

  174. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.

    CAS  PubMed  CrossRef  Google Scholar 

  175. Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Prog Ret Eye Res. 2002;21:507–27.

    CrossRef  Google Scholar 

  176. Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res. 2007;47:946–54.

    CAS  PubMed  CrossRef  Google Scholar 

  177. Hang CY, Kitahashi T, Parhar IS. Neuronal organization of deep brain opsin photoreceptors in adult teleosts. Front Neuroanat. 2016;10:48.

    PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan E. Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Arslan, O.E. (2018). Anatomy and Physiology of Retina and Posterior Segment of the Eye. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_1

Download citation