Sadler TW. Langman’s medical embryology. 11th ed. Baltimore, MD: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2010. p. 335–44.
Google Scholar
Moore K. Essentials of human embryology. St. Louis, MO: The C.V. Mosby; 1988. p. 170–4.
Google Scholar
Davis N, Mor E, Ashery-Padan R. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27. Development. 2011;138(1):127–38.
CAS
PubMed
CrossRef
Google Scholar
Duke-Elder S, Cook C. Normal and abnormal development. Part 1. Embryology. In: Duke-Elder S, editor. System of ophthalmology, vol. 3. London: Henry Kimpton; 1963. p. 190–201.
Google Scholar
Fieß A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, Bauer J. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 years of age. BMC Ophthalmol. 2017;17(1):228.
PubMed
PubMed Central
CrossRef
Google Scholar
Sharma RK, Ehinger BEJ. Development and structure of the retina. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 319–47.
Google Scholar
Hartnett M. Pediatric retina. Philadelphia, PA: Lippincott Williams & Wilkins; 2014. p. 710–3.
Google Scholar
Davis RJ, Alam NM, Zhao C, Müller C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep. 2017;9(1):42–9.
CAS
CrossRef
Google Scholar
Panda-Jonas S, Jonas JB, Jakobczk-Zmija M. Retinal pigment epithelial cell count, distribution and correlations in normal human eyes. Am J Ophthalmol. 1996;121:181–9.
CAS
PubMed
CrossRef
Google Scholar
Boulton M, Dayhaw-Barker P. The role of the retinal epithelium: topographical variation and ageing changes. Eye. 2001;15:384–9.
CAS
PubMed
CrossRef
Google Scholar
La Cour M. The retinal pigment epithelium. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 348–57.
Google Scholar
Mander KA, Finnie JW. Loss of Endothelial Barrier Antigen Immunoreactivity in Rat RetinalMicrovessels is Correlated with Clostridium perfringens Type D Epsilon Toxin-induced Damage to the Blood-Retinal Barrier. J Comp Pathol. 2018;158:51.
CAS
PubMed
CrossRef
Google Scholar
Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Rev Exp Eye Res. 2004;78:715–21.
CAS
CrossRef
Google Scholar
Davson H. The aqueous humour and the intraocular pressure (chapter 1). In: Davson H, editor. Physiology of the eye. 5th ed. London: Macmillan; 1990. p. 3–95.
CrossRef
Google Scholar
Thumann G, Hoffmann S, Hinton DR. Cell biology of the retinal pigment epithelium. In: Ryan SJ, editor. Retina. 4th (ed) ed. St. Louis: Elsevier-Mosby; 2006. p. 137–52.
CrossRef
Google Scholar
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.
CAS
PubMed
CrossRef
Google Scholar
Kanski JJ, Milewski SA. Introduction. In: Kanski JJ, Milewski SA, editors. Diseases of the macula. St Louis: Mosby; 2002. p. 1–18.
Google Scholar
Pleyer U, Pohlmann D. Anatomy and immunology of the eye. Z Rheumatol. 2017;76(8):656–63.
CAS
PubMed
CrossRef
Google Scholar
Moustafa MT, Ramirez C, Schneider K, Atilano SR, Limb GA, Kuppermann BD, Kenney MC. Protective Effects of Memantine on Hydroquinone-Treated Human Retinal Pigment Epithelium Cells and Human Retinal Müller Cells. J Ocul Pharmacol Ther. 2017;33(8):610–9.
CAS
PubMed
CrossRef
Google Scholar
Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985;60(4):327–46.
CAS
PubMed
CrossRef
Google Scholar
Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. J Am Med Assoc. 2003;290(15):2057–60.
CAS
CrossRef
Google Scholar
Lightman S, Towler HMA. Diabetic retinopathy. Clin Cornerstone. 2003;5(2):12–21.
PubMed
CrossRef
Google Scholar
Berlanga-Acosta J, Mendoza-Mari Y, Martínez MD, Valdés-Perez C, Ojalvo AG, Armstrong DG. Expression of cell proliferation cycle negative regulators in fibroblasts of an ischemic diabetic foot ulcer. A clinical case report. Int Wound J. 2013;2:232–6.
CrossRef
Google Scholar
Bates NM, Tian J, Smiddy WE, Lee WH, Somfai GM, Feuer WJ, Shiffman JC, Kuriyan AE, Gregori NZ, Kostic M, Pineda S, Cabrera DeBuc D. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. Sci Rep. 2018;8(1):5355.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Tong L, Vernon SA, Kiel W, Sung V, Orr GM. Association of macular involvement with proliferative retinopathy in type 2 diabetes. Diabet Med. 2001;18(5):388–94.
CAS
PubMed
CrossRef
Google Scholar
Dowling JE. Retinal neurophysiology. In: Albert DA, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: Saunders; 2000. p. 1713–29.
Google Scholar
Lerner AB, Fitzpatrick TB, Calkins E, et al. Mammalian tyrosinase; the relationship of copper to enzymatic activity. J Biol Chem. 1950;187:793–802.
CAS
PubMed
Google Scholar
Morrison R, Mason K, Frost-Mason S. A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data. Pigment Cell Res. 1994;7(6):388–93.
CAS
PubMed
CrossRef
Google Scholar
Nusliha A, Dalpatadu U, Amarasinghe B, Chandrasinghe PC, Deen KI. Congenital hypertrophy of retinal pigment epithelium (CHRPE) in patients with familial adenomatous polyposis (FAP); a polyposis registry experience. BMC Res Notes. 2014;7:734.
PubMed
PubMed Central
CrossRef
Google Scholar
Georgalas I, Paraskevopoulos T, Symmeonidis C, Petrou P, Koutsandrea C. Peripheral sea-fan retinal neovascularization as a manifestation of chronic rhegmatogenous retinal detachment and surgical management. BMC Ophthalmol. 2014;14:112.
PubMed
PubMed Central
CrossRef
Google Scholar
Levin LA. Optic nerve. In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 603–38.
Google Scholar
Tessier-Lavigne M. Visual processing by the retina. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 507–22.
Google Scholar
Gallivan JP, Goodale MA. The dorsal "action" pathway. Handb Clin Neurol. 2018;151:449–66.
PubMed
CrossRef
Google Scholar
Roof DJ, Makino CL. The structure and function of retinal photoreceptors. In: Albert DA, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: Saunders; 2000. p. 1624–73.
Google Scholar
Larsson J, Harrison C, Jackson J, Oh SM, Zeringyte V. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data. J Neurophysiol. 2017;117(2):818–35.
PubMed
CrossRef
Google Scholar
Williams TD, Wilkinson JM. Position of the fovea centralis with respect to the optic nerve head. Optom Vis Sci. 1992;69:369–77.
CAS
PubMed
CrossRef
Google Scholar
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol. 2017;595(16):5495–506.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Isenberg SJ. Macular development in the premature infant. Am J Ophthalmol. 1986;101:74–80.
CAS
PubMed
CrossRef
Google Scholar
Sjöstrand J, Rosén R, Nilsson M, Popovic Z. Arrested Foveal development in preterm eyes: thickening of the outer nuclear layer and structural redistribution within the fovea. Invest Ophthalmol Vis Sci. 2017;58(12):4948–58.
PubMed
CrossRef
Google Scholar
Hendrickson AE. Primate foveal development: a microcosm of current questions in neurobiology. Recent developments. Invest Ophthalmol Vis Sci. 1994;35:3129–33.
CAS
PubMed
Google Scholar
Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, Starostik MR, Gieser L, La Torre A, Nishio M, Bates O, Walton A, Bermingham-McDonogh O, Glass IA, Wong ROL, Swaroop A, Reh TA. Molecular anatomy of the developing human retina. Dev Cell. 2017;43(6):763–79.
CAS
PubMed
CrossRef
Google Scholar
Callaway EM. Structure and function of parallel pathways in the primate early visual system. J Physiol. 2005;566:13–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190–4.
PubMed
PubMed Central
Google Scholar
Burgi PY, Grzywacz NM. Model for the pharmacological basis of spontaneous synchronous activity in developing retinas. J Neurosci. 1994;14(12):7426–39.
CAS
PubMed
CrossRef
Google Scholar
Wang M, Jin Q, Wang H, Baniasadi N, Elze T. Quantifying positional variation of retinal blood vessels in glaucoma. PLoS One. 2018;13(3):e0193555.
PubMed
PubMed Central
CrossRef
Google Scholar
Zhu M, Madigan MC, Van Driel D, Maslim J, Billson F, Provis JM, Penfold PL. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70:767–76.
CAS
PubMed
CrossRef
Google Scholar
Capelanes NC, Diniz AV, Magalhães ÉP, Marques KO. Comparisons of retinal nerve fiber layer thickness changes after macular hole surgery. Arq Bras Oftalmol. 2018;81(1):37–41.
PubMed
CrossRef
Google Scholar
Provis JM. Development of the primate retinal vasculature. Prog Ret Eye Res. 2001;20:799–821.
CAS
CrossRef
Google Scholar
Lee KM, Choung HK, Kim M, Oh S, Kim SH. Positional change of optic nerve head vasculature during axial elongation as evidence of Lamina Cribrosa shifting: Boramae myopia cohort study report 2. Ophthalmology. 2018;pii: S0161–6420(17):32694–5.
Google Scholar
Horn FK, Mardin CY, Viestenz A, Jünemann AG. Association between localized visual field losses and thickness deviation of the nerve fiber layer in glaucoma. J Glaucoma. 2005;14(6):419–25.
PubMed
CrossRef
Google Scholar
Hogan MJ, Alvarado JA, Weddell JE. Retina. In: Histology of the human eye. An atlas and textbook, vol. 57. Philadelphia: Saunders; 1971. p. 393–521.
Google Scholar
Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM, Virgili G. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;11:CD008803.
PubMed Central
Google Scholar
Erwin E, Baker FH, Busen WF, Malpeli JG. Relationship between laminar topology and retinotopy in the rhesus lateral geniculate nucleus: results from a functional atlas. J Comp Neurol. 1999;407(1):92–102.
CAS
PubMed
CrossRef
Google Scholar
Fitzgibbon T. The human fetal retinal nerve fiber layer and optic nerve head: a DiI and DiA tracing study. Vis Neurosci. 1997;14:433–47.
CAS
PubMed
CrossRef
Google Scholar
Akahori T, Iwase T, Yamamoto K, Ra E, Terasaki H. Changes in choroidal blood flow and morphology in response to increase in intraocular pressure. Invest Ophthalmol Vis Sci. 2017;58(12):5076–85.
PubMed
CrossRef
Google Scholar
Ranjan R, Manayath GJ, Avadhani U, Narendran V. Rapid macular hole formation and closure in a vitrectomized eye following rhegmatogenous retinal detachment repair. Oman J Ophthalmol. 2018;11(1):71–4.
PubMed
PubMed Central
CrossRef
Google Scholar
Newell F. Anatomy and embryology. In: Newell F, editor. Ophthalmology. Principles and concepts. 8th ed. St. Louis: Mosby; 1996. p. 3–73.
Google Scholar
Fouquet S, Vacca O, Sennlaub F, Paques M. The 3D retinal capillary circulation in pigs reveals a predominant serial organization. Invest Ophthalmol Vis Sci. 2017;58(13):5754–63.
PubMed
CrossRef
Google Scholar
Vicol AD, Bogdănici T, Bogdănici C. Retinal vascular changes--predictive and prognostic factor in systemic disease. Oftalmologia. 2014;58(1):18–26.
PubMed
Google Scholar
Chen TL, Yarng SS. Vitreous hemorrhage from a persistent hyaloid artery. Vitreous hemorrhage from a persistent hyaloid artery. Retina. 1993;13(2):148–51.
CAS
PubMed
CrossRef
Google Scholar
Struijker-Boudier HAJ. Retinal microcirculation and early mechanisms of hypertension. Hypertension. 2008;51:821–2.
CAS
PubMed
CrossRef
Google Scholar
Olver JM, McCartney ACE. Orbital and ocular microvascular corrosion casting in man. Eye. 1989;3:588–96.
PubMed
CrossRef
Google Scholar
Olver JM, Spalton DJ, McCartney ACE. Microvascular study of the retrolaminar optic nerve in man: the possible significance on anterior ischaemic optic neuropathy. Eye. 1990;4:7–24.
PubMed
CrossRef
Google Scholar
Takkar B, Azad S, Shakrawal J, Gaur N, Venkatesh P. Blood flow pattern in a choroidal hemangioma imaged on swept-source-optical coherence tomography angiography. Indian J Ophthalmol. 2017;65(11):1240–2.
PubMed
PubMed Central
CrossRef
Google Scholar
Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Mitchell P. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J Hypertens. 2004;22:1543–9.
CAS
PubMed
CrossRef
Google Scholar
Paques M, Tadayoni R, Sercombe R, Laurent P, Genevois O, Gaudric A, Vicaut E. Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci. 2003;44(11):4960–7.
PubMed
CrossRef
Google Scholar
Conway MD, Stern E, Enfield DB, Peyman GA. Management of cataract in uveitis patients. Curr Opin Ophthalmol. 2018;29(1):69–74.
PubMed
CrossRef
Google Scholar
Brennan N, Petrou P, Reekie I, Pasu S, Kinsella M, Da Cruz L. Vitrectomy in phacoanaphylactic glaucoma secondary to posterior capsular rupture in an adult with persistent hyperplastic primary vitreous. Retin Cases Brief Rep. 2018;12(2):103–5.
PubMed
CrossRef
Google Scholar
Moore AT, Michaelides M. Vitreous (chapter 49). In: Taylor D, Hoyt CS, editors. Pediatric ophthalmology and strabismus. 3rd ed. Edinburgh: Elsevier Saunders; 2005. p. 472–85.
Google Scholar
Fielder AR, Quinn GE. Retinopathy of prematurity (chapter 51). In: Taylor D, Hoyt CS, editors. Pediatric ophthalmology and strabismus. 3rd ed. Edinburgh: Elsevier Saunders; 2005. p. 506–30.
Google Scholar
Nicholson L, Vazquez-Alfageme C, Patrao NV, Triantafyllopolou I, Bainbridge JW, Hykin PG, Sivaprasad S. Retinal nonperfusion in the posterior pole is associated with increased risk of neovascularization in central retinal vein occlusion. Am J Ophthalmol. 2017;182:118–25.
PubMed
CrossRef
Google Scholar
Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog Ret Eye Res. 2003;22:95–111.
CAS
CrossRef
Google Scholar
McLeod DS, Baba T, Bhutto IA, Lutty GA. Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye. Graefes Arch Clin Exp Ophthalmol. 2012;250(6):839–48.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Strittmatter K, Pomeroy H, Marneros AG. Targeting platelet-derived growth factor receptor β(+) scaffold formation inhibits choroidal neovascularization. Am J Pathol. 2016;186(7):1890–9.
CAS
PubMed
CrossRef
Google Scholar
Kim SJ, Campbell JP, Ostmo S, Jonas KE, Chan RVP, Chiang MF. Imaging and informatics in retinopathy of prematurity (i-ROP) research consortium. Changes in relative position of choroidal versus retinal vessels in preterm infants. Invest Ophthalmol Vis Sci. 2017;58(14):6334–41.
PubMed
PubMed Central
CrossRef
Google Scholar
Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res. 2018;63:1–19.
CAS
PubMed
CrossRef
Google Scholar
Öner A. Recent advancements in gene therapy for hereditary retinal dystrophies. Turk J Ophthalmol. 2017;47(6):338–43.
PubMed
PubMed Central
CrossRef
Google Scholar
Chow LC, Wright KW, Sola A. The CSMC oxygen administration study group: can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111:339–45.
PubMed
CrossRef
Google Scholar
Kalaie S, Gooya A. Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Comput Methods Prog Biomed. 2017;151:139–49.
CrossRef
Google Scholar
Oyster C. The retina in vivo and the optic nerve (chapter 16). In: Oyster C, editor. The human eye – structure and function. Sunderland, MA: Sinauer Associates; 1999. p. 701–51.
Google Scholar
Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.
PubMed
CrossRef
Google Scholar
Murphy L, Carroll G. Acute bilateral retinal artery occlusion causing sudden blindness in 25-year-old patient. Am J Emerg Med. 2018;pii: S0735–6757(18):30204–3.
Google Scholar
Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, Cutler NE, Houston SK, Munk MR, Fawzi AA, Mehta S, Hubschman JP, Ho AC, Sarraf D. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160(1):26–34.e1.
PubMed
CrossRef
Google Scholar
Bagheri N, Mehta S. Acute vision loss. Prim Care. 2015;42(3):347–61.
PubMed
CrossRef
Google Scholar
Kita Y, Inoue M, Kita R, Sano M, Orihara T, Itoh Y, Hirota K, Koto T, Hirakata A. Changes in the size of the foveal avascular zone after vitrectomy with internal limiting membrane peeling for a macular hole. Jpn J Ophthalmol. 2017;61(6):465–71.
PubMed
CrossRef
Google Scholar
Goldmann EE. Vitalfärbung am Zentralnervensystem. Abhandl Königl Preuss Akad Wiss. 1913;1:1–60.
Google Scholar
Harris A, Ciulla TA, Chung HS, Martin B. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol. 1998;116:1491–5.
CAS
PubMed
CrossRef
Google Scholar
Funk RHW. Blood supply of the retina. Ophthalmic Res. 1997;29:320–5.
CAS
PubMed
CrossRef
Google Scholar
Delaey C, Van de Voorde J. Regulatory mechanisms in the retinal and choroidal circulation. Rev Ophthalmic Res. 2000;32:249–56.
CAS
CrossRef
Google Scholar
Hao H, Sasongko MB, Wong TY, Che Azemin MZ, Aliahmad B, Hodgson L, Kawasaki R, Cheung CY, Wang JJ, Kumar DK. Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci. 2012;53(9):5799–805.
PubMed
CrossRef
Google Scholar
Hossler FE, Olson KR. Microvasculature of the avian eye: studies on the eye of the duckling with microcorrosion casting, scanning electron microscopy, and stereology. Am J Anat. 1984;170(2):205–21.
CAS
PubMed
CrossRef
Google Scholar
Daxer A. The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr Eye Res. 1993;12:1103–9.
CAS
PubMed
CrossRef
Google Scholar
Wilson C, Theodorou M, Cocker KD, Fielder A. The temporal retinal blood vessels and preterm birth. Br J Ophthalmol. 2006;90(6):702–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Girkin CA, Fazio MA, Yang H, Reynaud J, Burgoyne CF, Smith B, Wang L, Downs JC. Variation in the three-dimensional Histomorphometry of the normal human optic nerve head with age and race: Lamina Cribrosa and Peripapillary scleral thickness and position. Invest Ophthalmol Vis Sci. 2017;58(9):3759–69.
PubMed
PubMed Central
CrossRef
Google Scholar
Kanski JJ, Nischal KK. The optic disc. In: Ophthalmology. Clinical signs and differential diagnosis. St Louis: Mosby; 1999. p. 247–85.
Google Scholar
Varma R, Douglas GR, Steinmann WC, Wijsman K, Mawson D, Spaeth GL. A comparative evaluation of three methods of analyzing optic disc topography. Ophthalmic Surg. 1989;20(11):813–9.
CAS
PubMed
Google Scholar
Abalo-Lojo JM, Treus A, Arias M, Gómez-Ulla F, Gonzalez F. Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: a long term 5 year follow-up. Mult Scler Relat Disord. 2018;19:124–8.
CAS
PubMed
CrossRef
Google Scholar
Mataki N, Tomidokoro A, Araie M, Iwase A. Morphology of the optic disc in the Tajimi study population. Jpn J Ophthalmol. 2017;61(6):441–7.
PubMed
CrossRef
Google Scholar
Jurišić D, Novak Lauš K, Sesar I, Kuzman T. Comparison of optic nerve head morphology in patients with primary open angle glaucoma and non-arteritic anterior ischemic optic neuropathy. Acta Clin Croat. 2017;56(2):227–35.
PubMed
CrossRef
Google Scholar
Ballae Ganeshrao S, Turpin A, McKendrick AM. Sampling the visual field based on individual retinal nerve fiber layer thickness profile. Invest Ophthalmol Vis Sci. 2018;59(2):1066–74.
PubMed
CrossRef
Google Scholar
Roth G, Grunwald W, Dicke U. Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. J Comp Neurol. 2003;461(1):91–110.
PubMed
CrossRef
Google Scholar
Jonas J, Garway-Heath T. Primary glaucomas: optic disc features. In: Hitchings RA, editor. Glaucoma. London: BMJ books; 2000. p. 29–38.
Google Scholar
Yu PK, Balaratnasingam C, Morgan WH, Cringle SJ, McAllister IL, Yu DY. The structural relationship between the microvasculature, neurons, and glia in the human retina. Invest Ophthalmol Vis Sci. 2010;51(1):447–58.
PubMed
CrossRef
Google Scholar
Anderson DR. Ultrastructure of the optic nerve head. Arch Ophthalmol. 1970;83(1):63–73.
CAS
PubMed
CrossRef
Google Scholar
Cohen AI. New evidence supporting the linkage to extracellular space of outer segment saccules of frog cones but not rods. J Cell Biol. 1968;37(2):424–44.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Anderson DR. Ultrastructure of human a, d monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82(6):800–14.
CAS
PubMed
CrossRef
Google Scholar
Mokhtari M, Rabbani H, Mehri-Dehnavi A, Kafieh R. Exact localization of breakpoints of retinal pigment epithelium in optical coherence tomography of optic nerve head. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:1505–8.
PubMed
Google Scholar
Li D, Li T, Paschalis EI, Wang H, Taniguchi EV, Choo ZN, Shoji MK, Greenstein SH, Brauner SC, Turalba AV, Pasquale LR, Shen LQ. Optic nerve head characteristics in chronic angle closure glaucoma detected by swept-source OCT. Curr Eye Res. 2017;42(11):1450–7.
PubMed
CrossRef
Google Scholar
Duke-Elder S, Wybar KC. System of ophthalmology, the anatomy of the visual system, vol. 2. London: Kimpton; 1961. p. 286–93.
Google Scholar
Na KI, Lee WJ, Kim YK, Park KH, Jeoung JW. Evaluation of retinal nerve Fiber layer thinning in myopic glaucoma: impact of optic disc morphology. Invest Ophthalmol Vis Sci. 2017;58(14):6265–72.
PubMed
CrossRef
Google Scholar
Levitzky M, Henkind P. Angioarchitecture of the optic nerve. II Lamina cribrosa. Am J Ophthalmol. 1969;68(6):986–96.
CAS
PubMed
CrossRef
Google Scholar
Bron AJ, Tripathi RC, Tripathy BJ. Optic nerve, section 15.1. Wolff’s anatomy of the eye and orbit. 8th ed. London: Chapman & Hall; 1997. p. 489–535.
Google Scholar
Büssow H. The astrocytes in the retina and optic nerve head of mammals: a special glia for the ganglion cell axons. Cell Tissue Res. 1980;206(3):367–78.
PubMed
CrossRef
Google Scholar
Cohen AI. Ultrastructural aspects of the human optic nerve. Investig Ophthalmol. 1967;6(3):294–308.
CAS
Google Scholar
Hondur G, Göktaş E, Al-Aswad L, Tezel G. Age-related changes in the peripheral retinal nerve fiber layer thickness. Clin Ophthalmol. 2018;12:401–9.
PubMed
PubMed Central
CrossRef
Google Scholar
Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, Podos SM, Mittag T. Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci. 2002;43(3):587–94.
PubMed
Google Scholar
Krzyżanowska-Berkowska P, Melińska A, Helemejko I, Robert Iskander D. Evaluating displacement of lamina cribrosa following glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):791–800.
PubMed
PubMed Central
CrossRef
Google Scholar
Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. Arch Ophthalmol. 1981;99(12):2159–62.
CAS
PubMed
CrossRef
Google Scholar
Liu B, Kilpatrick JI, Lukasz B, Jarvis SP, McDonnell F, Wallace DM, Clark AF, O'Brien CJ. Increased substrate stiffness elicits a Myofibroblastic phenotype in human Lamina CribrosaCells. Invest Ophthalmol Vis Sci. 2018;59(2):803–14.
PubMed
CrossRef
Google Scholar
Bernstein SL, Meister M, Zhuo J, Gullapalli RP. Postnatal growth of the human optic nerve. Eye (Lond). 2016;30(10):1378–80.
CAS
CrossRef
Google Scholar
Wong VK. Retinal venous occlusive disease. Hawaii Med J. 1997;56(10):289–91.
CAS
PubMed
Google Scholar
Wu Z, Medeiros FA. Recent developments in visual field testing for glaucoma. Curr Opin Ophthalmol. 2018;29(2):141–6.
PubMed
CrossRef
Google Scholar
Kline LB, Bajandas FJ. Visual fields. In: Kline LB, Bajandas FJ, editors. Neuro ophthalmology. Review manual. 5th ed. Thorofare: Slack; 2004. p. 1–45.
Google Scholar
Masuda H, Mori M, Uzawa A, Muto M, Uchida T, Ohtani R, Akiba R, Yokouchi H, Yamamoto S, Kuwabara S. Recovery from optic neuritis attack in neuromyelitis optica spectrum disorder and multiple sclerosis. J Neurol Sci. 2016;367:375–9.
PubMed
CrossRef
Google Scholar
Backner Y, Kuchling J, Massarwa S, et al. Anatomical wiring and functional networking changes in the visual system following optic neuritis. JAMA Neurol. 2018;75(3):287–95.
PubMed
CrossRef
Google Scholar
Liu GT, Volpe NJ, Galetta SL. Vision loss: retinal disorders of neuro-ophthalmic interest. In: Liu GT, Volpe NJ, Galetta SL, editors. Neuro-ophthalmology. Diagnosis and management. Philadelphia: Saunders; 2001. p. 58–102.
Google Scholar
Glisson CC. Visual loss due to optic chiasm and retrochiasmal visual pathway lesions. Continuum (Minneap Minn). 2014;20(4 Neuro-ophthalmology):907–21.
Google Scholar
Zhao Y, Tan S, Chan TCY, Xu Q, Zhao J, Teng D, Fu H, Wei S. Clinical features of demyelinating optic neuritis with seropositive myelinoligodendrocyte glycoprotein antibody in Chinese patients. Br J Ophthalmol. 2018.; pii: bjophthalmol-2017-311177
Google Scholar
Simpson HD, Kita EM, Scott EK. Goodhill GJ. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol. 2013;521(6):1409–29.
PubMed
CrossRef
Google Scholar
Guillery RW. Developmental neurobiology: preventing midline crossings. Curr Biol. 2003;13:R871–2.
CAS
PubMed
CrossRef
Google Scholar
Van Horck FPG, Weinl C, Holt CE. Retinal axon guidance: novel mechanisms for steering. Curr Opin Neurobiol. 2004;14:61–6.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep. 2018 Mar 5;8(1):3979. https://doi.org/10.1038/s41598-018-22361-2.
Rancic A, Filipovic N, Marin Lovric J, Mardesic S, Saraga-Babic M, Vukojevic K. Neuronal differentiation in the early human retinogenesis. Acta Histochem. 2017;119(3):264–72.
CAS
PubMed
CrossRef
Google Scholar
Gonzalez-Fernandez F. Evolution of the visual cycle: the role of retinoid-binding proteins. J Endocrinol. 2002;175:75–88.
CAS
PubMed
CrossRef
Google Scholar
Bock AS, Binda P, Benson NC, Bridge H, Watkins KE, Fine I. Resting-state retinotopic organization in the absence of retinal input and visual experience. J Neurosci. 2015;35(36):12366–82.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
He S, Dong W, Deng Q, Weng S, Sun W. Seeing more clearly: recent advances in understanding retinal circuitry. Science. 2003;302:408–11.
CAS
PubMed
CrossRef
Google Scholar
Rasmussen RS, Schaarup AMH, Overgaard K. Therapist-assisted rehabilitation of visual function and hemianopia after brain injury: intervention study on the effect of the neuro vision technology rehabilitation program. JMIR Res Protoc. 2018;7(2):e65.
PubMed
PubMed Central
CrossRef
Google Scholar
van Wermeskerken M, van der Kamp J, Hoozemans MJ, Savelsbergh GJ. Catching moving objects: differential effects of background motion on action mode selection and movement control in 6- to 10-month-old infants. Dev Psychobiol. 2015;57(8):921–34.
PubMed
CrossRef
Google Scholar
Yang J, Watanabe J, Kanazawa S, Nishida S, Yamaguchi MK. Infants' visual system nonretinotopically integrates color signals along a motion trajectory. J Vis. 2015;15(1):25.
PubMed
CrossRef
Google Scholar
Birch EE. Stereopsis in infants and its developmental relation to visual acuity. In: Simons K, editor. Early visual development, normal and abnormal. New York/Oxford: Oxford University; 1993. p. 224–36.
Google Scholar
Tu JH, Foote KG, Lujan BJ, Ratnam K, Qin J, Gorin MB, Cunningham ET Jr, Tuten WS, Duncan JL, Roorda A. Dysflective cones: visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis. Am J Ophthalmol Case Rep. 2017;7:14–9.
PubMed
PubMed Central
CrossRef
Google Scholar
Akbas E, Eckstein MP. Object detection through search with a foveated visual system. PLoS Comput Biol. 2017;13(10):e1005743.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Kompaniez-Dunigan E, Abbey CK, Boone JM, Webster MA. Visual adaptation and the amplitude spectra of radiological images. Cogn Res Princ Implic. 2018;3(1):3.
PubMed
PubMed Central
CrossRef
Google Scholar
Norcia AM, Manny RE. Development of vision in infancy (chapter 21). In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 531–51.
Google Scholar
Sakmar TP. Color vision (chapter 23). In: Kaufman PL, Alm A, editors. Adler’s physiology of the eye. 10th ed. St Louis: Mosby; 2003. p. 578–85.
Google Scholar
Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye (Lond). 2016;30(2):247–54.
CAS
CrossRef
Google Scholar
Oide M, Okajima K, Nakagami H, Kato T, Sekiguchi Y, Oroguchi T, Hikima T, Yamamoto M, Nakasako M. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis. J Biol Chem. 2018;293(3):963–72.
CAS
PubMed
CrossRef
Google Scholar
Foster RG, Wulff K. The rhythm of rest and excess. Nat Rev Neurosci. 2005;6:407–14.
CAS
PubMed
CrossRef
Google Scholar
Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26:314–20.
CAS
PubMed
CrossRef
Google Scholar
Vartanian GV, Zhao X, Wong KY. Using flickering light to enhance nonimage-forming visual stimulation in humans. Invest Ophthalmol Vis Sci. 2015;56(8):4680–8.
PubMed
PubMed Central
CrossRef
Google Scholar
Foster RG. Keeping an eye on the time. The Cogan lecture. Invest Ophthalmol Vis Sci. 2002;43:1286–98.
PubMed
Google Scholar
Detwiler PB. Phototransduction in retinal ganglion cells. Yale J Biol Med. 2018;91(1):49–52.
PubMed
PubMed Central
Google Scholar
Hannibal J, Fahrenkrug J. Melanopsin: a novel photopigment involved in the photoentrainment of the brain’s biological clock? Ann Med. 2002;34:401–7.
CAS
PubMed
CrossRef
Google Scholar
Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245–7.
CAS
PubMed
CrossRef
Google Scholar
Qiu X, Kumbalsiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433:745–9.
CAS
PubMed
CrossRef
Google Scholar
García-Ayuso D, Galindo-Romero C, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M, Villegas Pérez MP. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Exp Eye Res. 2017;161:10–6.
PubMed
CrossRef
CAS
Google Scholar
Pepe IM. Recent advances in our understanding of rhodopsin and phototransduction. Prog Ret Eye Res. 2001;20:733–59.
CAS
CrossRef
Google Scholar
Morshedian A, Fain GL. Light adaptation and the evolution of vertebrate photoreceptors. J Physiol. 2017;595(14):4947–60.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Arshavsky VY, Lamb TD, Pugh EN Jr. G proteins and phototransduction. Annu Rev Physiol. 2002;64:153–87.
CAS
PubMed
CrossRef
Google Scholar
Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M, Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M, Kamei Y, Naruse K, Yoshimura T. Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat Commun. 2017;8(1):412.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: a new hypothesis. Med Hypotheses. 2016;96:20–9.
PubMed
CrossRef
Google Scholar
Xiao M, Hendrickson A. Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J Comp Neurol. 2000;425:545–59.
CAS
PubMed
CrossRef
Google Scholar
O’Brien KMB, Schulte D, Hendrickson AE. Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis. 2003;9:401–9.
PubMed
Google Scholar
Glushakova LG, Timmers AM, Pang J, Teusner JT, William W. Hauswirth human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors. Invest Ophthalmol Vis Sci. 2006;47:3505–13.
PubMed
CrossRef
Google Scholar
Kohl S, Biskup S. Genetic diagnostic testing in inherited retinal dystrophies. Klin Monatsbl Augenheilkd. 2013;230(3):243–6.
CAS
PubMed
Google Scholar
Campa C, Gallenga CE, Bolletta E, Perri P. The role of gene therapy in the treatment of retinal diseases: a review. Curr Gene Ther. 2017;17(3):194–213.
CAS
PubMed
CrossRef
Google Scholar
Weleber RG, Gregory-Evans K. Retinitis pigmentosa and allied disorders. In: Ryan SJ, editor. Retina. 4th ed. St. Louis: Elsevier-Mosby; 2006. p. 395–498.
CrossRef
Google Scholar
Hargrave PA. Rhodopsin structure, function, and topography. The Friedenwald lecture. IOVS. 2001;42:3–9.
CAS
Google Scholar
Omodaka K, An G, Tsuda S, Shiga Y, Takada N, Kikawa T, Takahashi H, Yokota H, Akiba M, Nakazawa T. Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters. PLoS One. 2017;12(12):e0190012.
PubMed
PubMed Central
CrossRef
Google Scholar
Chalupa LM, Günhan E. Development of On and Off retinal pathways and retinogeniculate projections. Prog Ret Eye Res. 2004;23:31–51.
CrossRef
Google Scholar
Valdez DJ, Nieto PS, Díaz NM, Garbarino-Pico E, Guido ME. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J. 2013;27(7):2702–12.
CAS
PubMed
CrossRef
Google Scholar
Freedman MS, Lucas RJ, Soni B, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:502–4.
CAS
PubMed
CrossRef
Google Scholar
Van Gelder RN, Buhr ED. Ocular photoreception for circadian rhythm entrainment in mammals. Ann Rev Vis Sci. 2016;2:153–69.
CrossRef
Google Scholar
Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.
CAS
PubMed
CrossRef
Google Scholar
Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Prog Ret Eye Res. 2002;21:507–27.
CrossRef
Google Scholar
Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res. 2007;47:946–54.
CAS
PubMed
CrossRef
Google Scholar
Hang CY, Kitahashi T, Parhar IS. Neuronal organization of deep brain opsin photoreceptors in adult teleosts. Front Neuroanat. 2016;10:48.
PubMed
PubMed Central
CrossRef
Google Scholar