Skip to main content

Automating the Extraction of Essential Genes from Literature

  • 947 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10933)

Abstract

The construction of repositories with curated information about gene essentiality for organisms of interest in Biotechnology is a very relevant task, mainly in the design of cell factories for the enhanced production of added-value products. However, it requires retrieval and extraction of relevant information from literature, leading to high costs regarding manual curation. Text mining tools implementing methods addressing tasks as information retrieval, named entity recognition and event extraction have been developed to automate and reduce the time required to obtain relevant information from literature in many biomedical fields. However, current tools are not designed or optimized for the purpose of identifying mentions to essential genes in scientific texts.

In this work, we propose a pipeline to automatically extract mentions to genes and to classify them accordingly to their essentiality for a specific organism. This pipeline implements a machine learning approach that is trained using a manually curated set of documents related with gene essentiality in yeast. This corpus is provided as a resource for the community, as a benchmark for the development of new methods. Our pipeline was evaluated performing resampling and cross validation over this curated dataset, presenting an accuracy of over 80%, and an f1-score over 75%.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95786-9_6
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-95786-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Guo, D., Zhang, L., Pan, H., Li, X.: Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. MicrobiologyOpen 6(4), e00486 (2017)

    CrossRef  Google Scholar 

  2. Yu, T., Zhou, Y.J., Wenning, L., Liu, Q., Krivoruchko, A., Siewers, V., Nielsen, J., David, F.: Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017)

    CrossRef  Google Scholar 

  3. Chen, W.H., Lu, G., Chen, X., Zhao, X.M., Bork, P.: OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 45(D1), D940–D944 (2017)

    CrossRef  Google Scholar 

  4. Cherry, J.M., Hong, E.L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E.T., Christie, K.R., Costanzo, M.C., Dwight, S.S., Engel, S.R., Fisk, D.G., Hirschman, J.E., Hitz, B.C., Karra, K., Krieger, C.J., Miyasato, S.R., Nash, R.S., Park, J., Skrzypek, M.S., Simison, M., Weng, S., Wong, E.D.: Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 40(Database issue), D700-D705 (2012)

    Google Scholar 

  5. Shatkay, H., Craven, M.: Mining the Biomedical Literature. Computational Molecular Biology. MIT Press, Cambridge (2012)

    Google Scholar 

  6. Gerner, M., Nenadic, G., Bergman, C.M.: LINNAEUS: a species name identification system for biomedical literature. BMC Bioinform. 11(1), 85 (2010)

    CrossRef  Google Scholar 

  7. Gooch, P.: BADREX: In situ expansion and coreference of biomedical abbreviations using dynamic regular expressions. CoRR abs/1206.4, p. 6 (2012)

    Google Scholar 

  8. Campos, D., Matos, S., Oliveira, J.: A modular framework for biomedical concept recognition. BMC Bioinform. 14(1), 281 (2013)

    CrossRef  Google Scholar 

  9. Ananiadou, S., Pyysalo, S., Tsujii, J., Kell, D.B.: Event extraction for systems biology by text mining the literature. Trends Biotechnol. 28(7), 381–390 (2010)

    CrossRef  Google Scholar 

  10. Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event extraction from biomedical papers using a full parser. In: Pacific Symposium on Biocomputing, pp. 408–419 (2001)

    Google Scholar 

  11. McClosky, D., Surdeanu, M., Manning, C.D.: Event extraction as dependency parsing. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT 2011, Stroudsburg, PA, USA, pp. 1626–1635. Association for Computational Linguistics (2011)

    Google Scholar 

  12. Chun, H., Hwang, Y., Rim, H.-C.: Unsupervised event extraction from biomedical literature using co-occurrence information and basic patterns. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, pp. 777–786. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30211-7_83

    CrossRef  Google Scholar 

  13. McCallum, A.K.: MALLET: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu

  14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

    CrossRef  Google Scholar 

  15. Rodrigues, R., Costa, H., Rocha, M.: Development of a machine learning framework for biomedical text mining. In: Saberi Mohamad, M., Rocha, M., Fdez-Riverola, F., Domínguez Mayo, F., De Paz, J. (eds.) PACBB 2016. AISC, vol. 477, pp. 41–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40126-3_5

    CrossRef  Google Scholar 

  16. Lourenço, A., Carreira, R., Carneiro, S., Maia, P., Glez-Peña, D., Fdez-Riverola, F., Ferreira, E.C., Rocha, I., Rocha, M.: @Note: A workbench for Biomedical Text Mining. J. Biomed. Inform. 42(4), 710–720 (2009)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work is co-funded by the North Portugal Regional Operational Programme, under the “Portugal 2020”, through the European Regional Development Fund (ERDF), within project SISBI- Refa NORTE-01-0247-FEDER-003381.

The Centre of Biological Engineering (CEB), University of Minho, sponsored all computational hardware and software required for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Rocha .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare they have no conflict of interests regarding this article.

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, R., Costa, H., Rocha, M. (2018). Automating the Extraction of Essential Genes from Literature. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2018. Lecture Notes in Computer Science(), vol 10933. Springer, Cham. https://doi.org/10.1007/978-3-319-95786-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95786-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95785-2

  • Online ISBN: 978-3-319-95786-9

  • eBook Packages: Computer ScienceComputer Science (R0)