Abstract
A model presented in current paper designed for dynamic classifying of real time cases received in a stream of big sensing data. The model comprises multiple remote autonomous sensing systems; each generates a classification scheme comprising a plurality of parameters. The classification engine of each sensing system is based on small data buffers, which include a limited set of “representative” cases for each class (case-buffers). Upon receiving a new case, the sensing system determines whether it may be classified into an existing class or it should evoke a change in the classification scheme. Based on a threshold of segmentation error parameter, one or more case-buffers are dynamically regrouped into a new composition of buffers, according to a criterion of segmentation quality.
Keywords
- Dynamic classifier
- Dynamic rules
- Big data
- Sensing data
- Memory buffers
- Clustering
- Classification
This is a preview of subscription content, access via your institution.
Buying options




References
Fayyad, U., Stolorz, P.: Data mining and KDD: promise and challenges. Future Gener. Comput. Syst. 13, 99–115 (1997). https://doi.org/10.1016/S0167-739X(97)00015-0
Gelbard, R., Goldman, O., Spieger, I.: Investigating diversity of clustering methods: an empirical comparison. Data Knowl. Eng. 63, 155–166 (2007)
Fan, J., Han, F., Han, L.: Challenges of big data analysis. Natl. Sci. Rev., 293–314 (2014)
Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86
Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16, 69–73 (2012). https://doi.org/10.1109/MIC.2012.14
Li, J., Xu, H.: Suggest what to tag: recommending more precise hashtags based on users’ dynamic interests and streaming tweet content. Knowl.-Based Syst. 106, 196–205 (2016). https://doi.org/10.1016/j.knosys.2016.05.047
Miller, Z., Dickinson, B., Deitrick, W., et al.: Twitter spammer detection using data stream clustering. Inf. Sci. 260, 64–73 (2014). https://doi.org/10.1016/j.ins.2013.11.016
Siddharth, S., Chauhan, N.C., Bhandery, S.D.: Incremental mining of association rules: a survey. Int. J. Comput. Sci. Inf. Technol. 3, 4041–4074 (2012)
Cheung, D.W., Han, J., Ng, V.T., Wong, C.: Maintenance of discovered association rules in large databases: An Incremental Updating Technique, pp. 106–114 (1996)
Grira, N., Crucianu, M., Boujemaa, N.: Unsupervised and semi-supervised clustering: a brief survey. In: Review of Machine Learning Techniques for Processing Multimedia Content (2005)
Sreedhar, G.: Web Data Mining and the Development of Knowledge-Based Decision Support Systems. IGI Global, Hershey (2016)
Song, Y.C., Meng, H.D., Wang, S.L., et al.: Dynamic and incremental clustering based on density reachable. In: Fifth International Joint Conference on INC, IMS and IDC, 2009. NCM 2009, pp. 1307–1310 (2009)
Mishra, N., Hsu, M., Dayal, U.: Computer implemented scalable, incremental and parallel clustering based on divide and conquer (2002)
Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44342-2
Jain, A.K., Murty, M.N., Flynn, P.L.: Data clustering: a survey. ACM Comput. Surv. 31, 264–323 (1999)
Vempala, S., Wang, G., Kannan, R., Cheng, D.: Techniques for clustering a set of objects (2010)
Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An efficient algorithm for the incremental updation of association rules in large databases (1997)
Zhang, C-Q., Ou, Y.: Method for data clustering and classification by a graph theory model - network partition into high density subgraphs (2009)
Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 3, 135–151 (2012). https://doi.org/10.1007/s12530-012-9046-5
Toth, C.K., Grejner-Brzezinska, D.: Extracting dynamic spatial data from airborne imaging sensors to support traffic flow estimation. ISPRS J. Photogramm. Remote Sens. 61, 137–148 (2006). https://doi.org/10.1016/j.isprsjprs.2006.09.010
Zhang, Y., He, S., Chen, J.: Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Trans. Netw. 24, 1632–1646 (2016). https://doi.org/10.1109/TNET.2015.2425146
Okeyo, G., Chen, L., Wang, H., Sterritt, R.: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive Mob. Comput. 10, 155–172 (2014). https://doi.org/10.1016/j.pmcj.2012.11.004
Ni, Q., Patterson, T., Cleland, I., Nugent, C.: Dynamic detection of window starting positions and its implementation within an activity recognition framework. J. Biomed. Inform. 62, 171–180 (2016). https://doi.org/10.1016/j.jbi.2016.07.005
Download Python. In: Python.org. https://www.python.org/downloads/. Accessed 20 Apr 2018
Ben-David, A.: Automatic generation of symbolic multiattribute ordinal knowledge - based DSS’s: methodology and applications. Decis. Sci. 23, 1357–1372 (1992)
UCI Machine Learning Repository: Data Sets. https://archive.ics.uci.edu/ml/datasets.html. Accessed 10 Dec 2016
Bohanec, M., Rajkovic, V.: Knowledge acquisition and explanation for multi-attribute decision making, pp. 1–19 (1988)
Bittmann, R.M., Gelbard, R.: Visualization of multi-algorithm clustering for better economic decisions—the case of car pricing. Decis. Support Syst. 47, 42–50 (2009). https://doi.org/10.1016/j.dss.2008.12.012
Acknowledgment
This work was supported in part by a grant from the MAGNET program of the Israeli Innovation Authority; who also submitted this work as a patent application.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gelbard, R., Khalemsky, A. (2018). Dynamic Classifier and Sensor Using Small Memory Buffers. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2018. Lecture Notes in Computer Science(), vol 10933. Springer, Cham. https://doi.org/10.1007/978-3-319-95786-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-95786-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95785-2
Online ISBN: 978-3-319-95786-9
eBook Packages: Computer ScienceComputer Science (R0)