Advertisement

Study on Low-Strength Biocemented Sands Using a Temperature-Controlled MICP (Microbially Induced Calcite Precipitation) Method

  • Yang Wang
  • Hanlong Liu
  • Zhichao Zhang
  • Peng Xiao
  • Xiang He
  • Yang Xiao
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

MICP (Microbially Induced Calcite Precipitation) technique is recently known as a new research area in geotechnical engineering. This technique provides a more environmentally way to enhancing the soil strength and stiffness by the MICP process in the soil pores. However, the spatial uniformity of MICP in the treated sands, which determines the effectiveness of MICP technique, remains a challenging issue even in the laboratory tests, especially for low-strength biocemented sands. Noting that the MICP process could be greatly inhibited under low temperatures before the homogeneous conditions of MICP reactions is achieved in sands, a temperature-controlled MICP method is proposed in this paper to improve the MICP uniformity in low-strength biocemented sands. A series of temperature-controlled MICP tests are made and the results are compared with the MICP tests under a constant temperature.

Keywords

MICP technique Uniformity Temperature ISO sands 

References

  1. Al Qabany, A., Soga, K.: Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 63(4), 331–339 (2013).  https://doi.org/10.1680/geot.SIP13.P.022CrossRefGoogle Scholar
  2. Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., Crawford, R.: Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J. Geotech. Geoenviron. Eng. 139(6), 928–936 (2013).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781CrossRefGoogle Scholar
  3. Cheng, L., Cord-Ruwisch, R., Shahin, M.A.: Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can. Geotech. J. 50(1), 81–90 (2013).  https://doi.org/10.1139/cgj-2012-0023CrossRefGoogle Scholar
  4. Chu, J., Ivanov, V., Stabnikov, V., Li, B.: Microbial method for construction of an aquaculture pond in sand. Géotechnique 63(10), 871–875 (2013).  https://doi.org/10.1680/geot.SIP13.P.007CrossRefGoogle Scholar
  5. DeJong, J.T., Fritzges, M.B., Nüsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006).  https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)CrossRefGoogle Scholar
  6. Feng, K., Montoya, B.M.: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J. Geotech. Geoenviron. Eng. 142(1), 9 (2016).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379CrossRefGoogle Scholar
  7. Jiang, N., Kuo, M., Soga, K.: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures. J. Geotech. Geoenviron. Eng. (2016).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559CrossRefGoogle Scholar
  8. Lin, H., Suleiman, M.T., Brown, D.G., Kavazanjian, E.: Mechanical behavior of sands treated by microbially induced carbonate precipitation. J. Geotech. Geoenviron. Eng. 142(2), 4015066 (2016).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383CrossRefGoogle Scholar
  9. Mitchell, J.K., Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005).  https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)CrossRefGoogle Scholar
  10. Montoya, B.M., DeJong, J.T., Boulanger, R.W.: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013).  https://doi.org/10.1680/geot.SIP13.P.019CrossRefGoogle Scholar
  11. Mortensen, B.M., DeJong, J.T.: Strength and stiffness of MICP treated sand subjected to various stress paths. Geo-Frontiers 4012–4020 (2011).  https://doi.org/10.1061/41165(397)410
  12. Raghunandan, M., Juneja, A., Hsiung, B.: Preparation of reconstituted sand samples in the laboratory. Int. J. Geotech. Eng. 6(1), 125–131 (2013).  https://doi.org/10.3328/ijge.2012.06.01.125-131CrossRefGoogle Scholar
  13. van Paassen, L.A., Ghose, R., van der Linden, T.J.M., van der Star, W.R.L., van Loosdrecht, M.C.M.: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136(12), 1721–1728 (2010).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382CrossRefGoogle Scholar
  14. Venuleo, S., Laloui, L., Terzis, D., Hueckel, T., Hassan, M.: Microbially induced calcite precipitation effect on soil thermal conductivity. Geotech. Lett. 6(1), 39–44 (2016).  https://doi.org/10.1680/jgele.15.00125CrossRefGoogle Scholar
  15. Whiffin, V.S., van Paassen, L.A., Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24(5), 417–423 (2007).  https://doi.org/10.1080/01490450701436505CrossRefGoogle Scholar
  16. Xiao, Y., He, X., Liu, H.: New lightweight geomaterials: biocemented sand mixed with expanded polystyrene beads. Sci. China Tech. Sci. 60(7), 1118–1120 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yang Wang
    • 1
  • Hanlong Liu
    • 1
  • Zhichao Zhang
    • 1
  • Peng Xiao
    • 1
  • Xiang He
    • 1
  • Yang Xiao
    • 1
  1. 1.School of Civil EngineeringChongqing UniversityChongqingChina

Personalised recommendations