Skip to main content

Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer

  • Chapter
  • First Online:
Cell & Molecular Biology of Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1095))

Abstract

Typically the normal epithelial cells are a single layer, held tightly by adherent proteins that prevent the mobilization of the cells from the monolayer sheet. During prostate cancer progression, the epithelial cells can undergo epithelial-mesenchymal transition or EMT, characterized by morphological changes in their phenotype from cuboidal to spindle-shaped. This is associated with biochemical changes in which epithelial cell markers such as E-cadherin and occludins are down-regulated, which leads to loss of cell-cell adhesion, while mesenchymal markers such as vimentin and N-cadherin are up-regulated, thereby allowing the cells to migrate or metastasize to different organs. The EMT transition can be regulated directly and indirectly by multiple molecular mechanisms including growth factors and cytokines such as transforming growth factor-beta (TGF-β), epidermal growth factor (EGF) and insulin-like growth factor (IGF), and signaling pathways such as mitogen-activated protein kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K). This signaling subsequently induces expression of various transcription factors like Snail, Twist, Zeb1/2, that are also known as master regulators of EMT. Various markers associated with EMT have been reported in prostate cancer patient tissue as well as a possible association with health disparities. There has been consideration to therapeutically target EMT in prostate cancer patients by targeting the EMT signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829

    Article  CAS  Google Scholar 

  2. Thiery JP et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  Google Scholar 

  3. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420

    Article  CAS  Google Scholar 

  4. Imran Khan M et al (2015) Role of epithelial mesenchymal transition in prostate tumorigenesis. Curr Pharm Des 21(10):1240–1248

    Article  Google Scholar 

  5. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  Google Scholar 

  6. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134

    Article  Google Scholar 

  7. Nauseef JT, Henry MD (2011) Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 8(8):428–439

    Article  Google Scholar 

  8. Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118(19):4325–4326

    Article  CAS  Google Scholar 

  9. Nieto MA, Cano A (2012) The epithelial–mesenchymal transition under control: global programs to regulate epithelial plasticity. In Seminars in cancer biology. Elsevier

    Google Scholar 

  10. Sethi S et al (2011) Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 3(1):90

    CAS  Google Scholar 

  11. Harris WP et al (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6(2):76–85

    Article  CAS  Google Scholar 

  12. Grant CM, Kyprianou N (2013) Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Translational andrology and urology 2(3):202

    PubMed  PubMed Central  Google Scholar 

  13. Liu Y-N et al (2008) Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 28(23):7096–7108

    Article  CAS  Google Scholar 

  14. Cano A et al (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76

    Article  CAS  Google Scholar 

  15. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3(3):155–166

    Article  CAS  Google Scholar 

  16. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428

    Article  CAS  Google Scholar 

  17. Smith BN, Odero-Marah VA (2012) The role of snail in prostate cancer. Cell Adhes Migr 6(5):433–441

    Article  Google Scholar 

  18. Zhau HE et al (2008) Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25(6):601

    Article  CAS  Google Scholar 

  19. Thakur N, Gudey S, Marcusson A, Fu J, Bergh A, Heldin C, Landstrom M (2014) TGF-ß-induced invasion of prostate Cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle 13(15):2400–2414

    Article  CAS  Google Scholar 

  20. Tu WH et al (2003) The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 5(3):267–277

    Article  CAS  Google Scholar 

  21. Cao Z, Kyprianou N (2015) Mechanisms navigating the TGF-ß pathway in prostate cancer. Asian J Urol 2:11–18

    Article  Google Scholar 

  22. Gennigens C, Menetrier-Caux C, Droz JP (2006) Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58(2):124–145

    Article  CAS  Google Scholar 

  23. Graham TR et al (2008) Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68(7):2479–2488

    Article  CAS  Google Scholar 

  24. Di Lorenzo G et al (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8(11):3438–3444

    PubMed  Google Scholar 

  25. Tang J et al (2016) CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-alpha/EGFR pathway in hypoxic androgen-independent prostate cancer cells. Oncol Rep 35(2):1153–1162

    Article  CAS  Google Scholar 

  26. Grotzinger J (2002) Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta 1592(3):215–223

    Article  CAS  Google Scholar 

  27. Maruyama IN (2014) Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cell 3(2):304–330

    Article  CAS  Google Scholar 

  28. Hughes FJ et al (2006) Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000 41:48–72

    Article  Google Scholar 

  29. Poniatowski LA et al (2015) Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediat Inflamm 2015:137823

    Article  Google Scholar 

  30. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol 11(11):S44–S51

    Article  CAS  Google Scholar 

  31. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  Google Scholar 

  32. Cho KH et al (2014) A ROS/STAT3/HIF-1alpha signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. Prostate 74(5):528–536

    Article  CAS  Google Scholar 

  33. Gravdal K et al (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13(23):7003–7011

    Article  CAS  Google Scholar 

  34. Sethi S et al (2010) Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 3(1):90–99

    PubMed  PubMed Central  Google Scholar 

  35. Miller DB (2014) Pre-screening age African-American males: what do they know about prostate cancer screening, knowledge, and risk perceptions? Soc Work Health Care 53(3):268–288

    Article  Google Scholar 

  36. Wang H et al (2016) Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression. Oncotarget 7(5):5677–5689

    PubMed  Google Scholar 

  37. Li P, Yang R, Gao W-Q (2014) Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 13(1):55

    Article  Google Scholar 

  38. Makrilia N et al (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Investig 27(10):1023–1037

    Article  CAS  Google Scholar 

  39. Cao Z et al (2017) Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells. Oncotarget 8(45):78507–78519

    PubMed  PubMed Central  Google Scholar 

  40. Ping H et al (2016) IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer. Oncol Rep 36(3):1658–1664

    Article  CAS  Google Scholar 

  41. Qu X et al (2017) Update of IGF-1 receptor inhibitor (ganitumab, dalotuzumab, cixutumumab, teprotumumab and figitumumab) effects on cancer therapy. Oncotarget 8(17):29501–29518

    Article  Google Scholar 

  42. Jones E, Pu H, Kyprianou N (2009) Targeting TGF-beta in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets 13(2):227–234

    Article  CAS  Google Scholar 

  43. Burton LJ et al (2014) Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells. BMC Complement Altern Med 14:97

    Article  Google Scholar 

  44. Hudson TS et al (2007) Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms. Cancer Res 67(17):8396–8405

    Article  CAS  Google Scholar 

  45. Paller CJ et al (2015) A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: safety, tolerability, and dose determination. Prostate 75(14):1518–1525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Odero-Marah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odero-Marah, V., Hawsawi, O., Henderson, V., Sweeney, J. (2018). Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer. In: Schatten, H. (eds) Cell & Molecular Biology of Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-319-95693-0_6

Download citation

Publish with us

Policies and ethics