Poster: “Radiation Remote Laboratory” with Two Level Diagnostics

  • Michal Krbecek
  • Sayan Das
  • Franz SchauerEmail author
  • Miroslava Ozvoldova
  • Frantisek Lustig
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 47)


The paper describes the remote experiment “Radiation Remote Laboratory” with two levels diagnostic system, built on ISES - Internet School Experimental System, accessible across the Internet and provided via the system REMLABNET ( The remote experiment strives to provide the basic knowledge on γ radioactivity and/or γ radiation and its basic application laws, and parameters like its Poisson distribution, intensity dependence on distance from the point source and provides basic ideas about its absorption in various materials. Absorption in Cu on thickness of the Cu material is possible to examine in detail. Besides, this experiment serves to develop the basic knowledge for handling the radioactive materials in education and practice.


ISES Remote experiment Diagnostic system Radioactivity Intensity Shielding effect Absorption 



The support of the project of the Swiss National Science Foundation “SCOPES”, No. IZ74Z0_160454 is highly appreciated. The support of the Internal Agency Grant of the Tomas Bata University in Zlin for Ph.D. students is acknowledged.


  1. 1.
    Eijkelhof, H.M.C.: Radiation and Risk in Physics Education. CD-ß Press, Utrecht (1990)Google Scholar
  2. 2.
    Schauer, F., Gerza, M., Krbecek, M., Ozvoldova, M.: ‘Remote Wave Laboratory’ with embedded simulation–real environment for waves mastering. In: Online Engineering and Internet of Things, pp. 182–189. Springer, Heidelberg (2018)Google Scholar
  3. 3.
    Schauer, F., et al.: REMLABNET III—federated remote laboratory management system for university and secondary schools. In: 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 238–241 (2016)Google Scholar
  4. 4.
    Holm, E., Persson, R.B.R.: Biophysical aspects of Am-241 and Pu-241 in the environment. Radiat. Environ. Biophys. 15(3), 261–276 (1978)CrossRefGoogle Scholar
  5. 5.
    Nwosu, O.B.: Comparison of gamma ray shielding strength of lead, aluminium and copper from their experimental and MCNP simulation result (2015) Google Scholar
  6. 6.
    Schauer, F., Krbecek, M., Beno, P., Gerza, M., Palka, L., Spilakova, P.: REMLABNET-open remote laboratory management system for e-experiments. In: 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 268–273 (2014)Google Scholar
  7. 7.
    Arbia, G., Griffith, D., Haining, R.: Error propagation modelling in raster GIS: overlay operations. Int. J. Geogr. Inf. Sci. 12(2), 145–167 (1998)CrossRefGoogle Scholar
  8. 8.
    Shamim, S., Hassan, H., Anwar, M.S.: Natural radioactivity and statistics. Lab Monogr. Introd. Exp. Phys. 206 (2010) Google Scholar
  9. 9.
    Ozvoldova, M., Schauer, F.: Remote laboratories in research-based education of real world phenomena. Peter Lang, Frankfurt am Main (2015). 183 pp. [9,44 AH]. ISBN 978-80-224-1435-7. ISSN 2195-1845Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Michal Krbecek
    • 1
  • Sayan Das
    • 1
  • Franz Schauer
    • 1
    Email author
  • Miroslava Ozvoldova
    • 1
  • Frantisek Lustig
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPraha 2Czech Republic

Personalised recommendations