Skip to main content

Method for Compensation of Radius and Shape of Spherical Probe When Measuring Complex Surfaces with CMMs

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Industrial Engineering (ICIE 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Measurement practice on coordinate measuring machines showed that the real measurement accuracy is usually much higher than indicated in the technical documentation. The overall error in measuring the geometry consists of the errors in determining the point of contact on the surface of the part, compensation for deviations in the location of the base surfaces, and errors in calculating the surface parameters. The error in determining the touch point of the probe and the part is due to the difference in direction between the normals to the nominal and real surfaces. Therefore, the calculation becomes necessary to compensate the radius of the touch probe. A simple compensation method calculates only the normal to the nominal surface of the workpiece. More advanced methods take into account the coordinates of neighboring touch points and calculate equidistant surfaces. The article proposes an iterative method of compensating the radius of the probe by successively refining the coordinates of the point of tangency with respect to the nominal surface. In this method, the angle between the normals to the nominal and real surfaces at each measured point is minimized. Comparison of the results of compensation of the probe radius by the developed method with the standard method confirmed the high efficiency. The article provides an example of calculating the compensation of the probe radius for the turbine blade of the compressor, which showed a decrease in the measurement error by 23–29%. The application of the new method is useful when there is a small number of measured points and their location on the complex uneven surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazhkin BS, Mitrotvorskii VS (2005) Calculation of curved surfaces on coordinate measuring machines. Meas Tech 48:657–662

    Article  Google Scholar 

  2. Marchuk V, Makov S, Minaev A, Voronin V, Chernyshov D (2017) Removing of systematic measurement errors caused by asymmetric distribution law of the noise Component. In: Proceedings of 2016 IEEE east-west design and test symposium, p 7807624

    Google Scholar 

  3. Korolev AA, Kochetkov AV, Zakharov OV (2018) Optimization of control points number at coordinate measurements based on the monte-carlo method. J Phys Conf Ser 944:012061

    Article  Google Scholar 

  4. Pechenin VA, Bolotov MA, Ruzanov NV, Yanyukina MV (2015) Optimization of measurement of the geometry of parts with complex surfaces. Meas Tech 58:261–268

    Article  Google Scholar 

  5. Martinova LI, Grigoryev AS, Sokolov SV (2012) Diagnostics and forecasting of cutting tool wear at CNC machines. Autom Remote Control 73:742–749

    Article  Google Scholar 

  6. Rajamohan G, Shunmugam MS, Samuel GL (2011) Effect of probe size and measurement strategies on assessment of freeform profile deviations using coordinate measuring machine. Measurement 44:832–841

    Article  Google Scholar 

  7. Lee R, Shiou F (2010) Calculation of the unit normal vector using the cross-curve moving mask method for probe radius compensation of a freeform surface measurement. Measurement 43:469–478

    Article  Google Scholar 

  8. Poniatowska M (2012) Deviation model based method of planning accuracy inspection of free-form surfaces using CMMs. Measurement 45:927–937

    Article  Google Scholar 

  9. Ristic M, Ainsworth I, Brujic D (2001) Contact probe radius compensation using computer aided design models. Proc Inst Mech Eng Part B J Eng Manuf 215:819–834

    Article  Google Scholar 

  10. Demyanenko EG (2014) A technique of shaping the barrel-type pats. Russian Aeronaut 57:204–211

    Article  Google Scholar 

  11. Lunev AN, Moiseeva LT, Starikov AV, Ermakov RS (2007) Calculation of cutterpath errors in machining GTE monoimpeller vane channels with annular cutting tools. Russian Aeronaut 50:335–339

    Article  Google Scholar 

  12. Denisenko AF, Yakimov MV (2011) Determining elastic spindle characteristics by the finite-element model. Russ Eng Res 31:1133–1136

    Article  Google Scholar 

  13. Khaimovich IN (2014) Computer aided design of blank forging production facilities for aircraft engine compressor blades. Russian Aeronaut 2:169–174

    Article  Google Scholar 

  14. Savio E, DeChiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann 56:810–835

    Article  Google Scholar 

Download references

Acknowledgements

The study was performed by a grant from the Russian Science Foundation (project № 16-19-10204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grechnikov, F.V., Kochetkov, A.V., Zakharov, O.V. (2019). Method for Compensation of Radius and Shape of Spherical Probe When Measuring Complex Surfaces with CMMs. In: Radionov, A., Kravchenko, O., Guzeev, V., Rozhdestvenskiy, Y. (eds) Proceedings of the 4th International Conference on Industrial Engineering. ICIE 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-95630-5_190

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95630-5_190

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95629-9

  • Online ISBN: 978-3-319-95630-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics