Higher Dimensional Geometries. What Are They Good For?

  • Boris OdehnalEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 809)


Geometries in higher dimensional spaces have many applications. We shall give a compilation of a few well-known examples here. The fact that some higher dimensional geometries can be found within some lower dimensional geometries makes them even more interesting. At hand of some familiar examples, we shall see what these concepts in geometry can do for us. In the beginning, the meaning of dimension will be clarified and an agreement is reached about what is higher dimensional. A few words will be said about the relations and interplay between models of various geometries. To the concept of model spaces a major part of this contribution will be dedicated to. A full section is dedicated to the applications of higher dimensional geometries.


  1. 1.
    Berzolari, L., Rohn, K.: Algebraische Raumkurven und abwickelbare Flächen. Enzykl. Math. Wiss. Bd. 3-2-2a, B.G. Teubner, Leipzig, (1926)Google Scholar
  2. 2.
    Blaschke, W.: Vorlesungen über Differentialgeometrie III. Springer, Berlin (1929)zbMATHGoogle Scholar
  3. 3.
    Burau, W.: Mehrdimensionale und höhere projektive Geometrie. VEB Deutscher Verlag der Wissenschaften, Berlin (1961)zbMATHGoogle Scholar
  4. 4.
    Cecil, T.E.: Lie Sphere Geometry, 2nd edn. Springer, New York (2008)zbMATHGoogle Scholar
  5. 5.
    Coolidge, J.L.: A Treatise on the Circle and the Sphere. Clarendon, Oxford (1916)zbMATHGoogle Scholar
  6. 6.
    Cremona, L.: Elemente der Projektiven Geometrie. Verlag Cotta, Stuttgart (1882)zbMATHGoogle Scholar
  7. 7.
    Giering, O.: Vorlesungen Über Höhere Geometrie. Vieweg, Braunschweig (1982)CrossRefGoogle Scholar
  8. 8.
    Glaeser, G., Stachel, H., Odehnal, B.: The Universe of Conics. From the ancient Greeks to 21st century developments. Springer-Verlag, Heidelberg (2016)Google Scholar
  9. 9.
    Graßmann, H.: Die Ausdehnungslehre. Verlag Th. Enslin, Berlin (1862)Google Scholar
  10. 10.
    Havlicek, H., Odehnal, B., Saniga, M.: Factor-group-generated polar spaces and (multi-)Qudits. SIGMA Symm. Integrab. Geom. Meth. Appl. 5/098, 15 pp (2009)Google Scholar
  11. 11.
    Havlicek, H., Kosiorek, J., Odehnal, B.: A point model for the free cyclic submodules over ternions. Results Math. 63, 1071–1078 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Havlicek, H., List, K., Zanella, C.: On automorphisms of flag spaces. Linear Multilinear Algebra 50, 241–251 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Clarendon Press, Oxford (1998)zbMATHGoogle Scholar
  14. 14.
    Hofer, M., Odehnal, B., Pottmann, H., Steiner, T., Wallner, J.: 3D shape recognition and reconstruction based on line element geometry. In: 10th IEEE International Confirence Computer Vision, vol. 2, pp. 1532–1538. IEEE Computer Society, 2005, ISBN 0-7695-2334-XGoogle Scholar
  15. 15.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters Ltd., Natick, MA (1993)zbMATHGoogle Scholar
  16. 16.
    Klawitter, D.: Clifford Algebras. Geometric Modelling and Chain Geometries with Application in Kinematics. Ph.D. thesis, TU Dresden (2015)Google Scholar
  17. 17.
    Odehnal, B.: Flags in Euclidean three-space. Math. Pannon. 17(1), 29–48 (2006)MathSciNetGoogle Scholar
  18. 18.
    Odehnal, B., Pottmann, H., Wallner, J.: Equiform kinematics and the geometry of line elements. Beitr. Algebra Geom. 47(2), 567–582 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Odehnal, B.: Die Linienelemente des \({\mathbb{P}}^3\). Österreich. Akad. Wiss. math.-naturw. Kl. S.-B. II(215), 155–171 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Odehnal, B.: Subdivision algorithms for ruled surfaces. J. Geom. Graphics 12(1), 35–52 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Odehnal, B.: Hermite interpolation with ruled and channel surfaces. G - slovenský Časopis pre Geometriu a Grafiku 14(28), 35–58 (2017)Google Scholar
  22. 22.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin - Heidelberg - New York (2001)zbMATHGoogle Scholar
  23. 23.
    Pottmann, H., Hofer, M., Odehnal, B., Wallner, J.: Line geometry for 3D shape understanding and reconstruction. In: Pajdla, T., Matas, J. (eds.) Computer vision - ECCV 2004, Part I, volume 3021 of Lecture Notes in Computer Science, pp. 297–309. Springer, 2004, ISBN 3-540-21984-6Google Scholar
  24. 24.
    Segre, C.: Mehrdimensionale Räume. Enzykl. Math. Wiss. Bd. 3-2-2a, B.G. Teubner, Leipzig, (1912)Google Scholar
  25. 25.
    Study E.: Geometrie der Dynamen. B.G. Teubner, Leipzig (1903)Google Scholar
  26. 26.
    Veronese, G.: Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten geradliniger Einheiten, in elementarer Form entwickelt. B.G. Teubner, Leipzig (1894)zbMATHGoogle Scholar
  27. 27.
    Wallner, J., Pottmann, H.: Intrinsic Subdivision with Smooth Limits for Ggraphics and Animation. ACM Trans. Graphics 25/2 (2006), 356–374CrossRefGoogle Scholar
  28. 28.
    Weiss, E.A.: Einführung in die Liniengeometrie und Kinematik. B.G. Teubner, Leipzig (1935)zbMATHGoogle Scholar
  29. 29.
    Windisch, G., Odehnal, B., Reimann, R., Anderhuber, F., Stachel, H.: Contact areas of the tibiotalar joint. J. Orthopedic Res. 25(11), 1481–1487 (2007)CrossRefGoogle Scholar
  30. 30.
    Zindler, K.: Liniengeometrie mit Anwendungen I. II. G.J. Göschen’sche Verlagshandlung, Leipzig (1906)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Applied Arts ViennaViennaAustria

Personalised recommendations