Evolution of Perturbations

  • Oliver PiattellaEmail author
Part of the UNITEXT for Physics book series (UNITEXTPH)


In this Chapter we solve exactly some of the equations that we found in Chap. 4, using some approximations. In particular, we can distinguish 4 cases of evolution:
  1. 1.

    On super-horizon scales,

  2. 2.

    In the matter-dominated epoch,

  3. 3.

    In the radiation-dominated epoch,

  4. 4.

    Deep inside the horizon,

for which it is possible to perform analytic calculations and thus gain a clearer physical insight.


Matter-dominated Epoch Super-horizon Scales Clear Physical Insight Matter Power Spectrum Matter Density Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)ADSCrossRefGoogle Scholar
  2. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. Abbott, B.P., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017)ADSCrossRefGoogle Scholar
  4. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)zbMATHGoogle Scholar
  5. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986)ADSCrossRefGoogle Scholar
  6. Dodelson, S.: Modern Cosmology. Academic Press, Amsterdam (2003)Google Scholar
  7. Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705–707 (1990)ADSCrossRefGoogle Scholar
  8. Eisenstein, D.J., Hu, W.: Baryonic features in the matter transfer function. Astrophys. J. 496, 605 (1998)ADSCrossRefGoogle Scholar
  9. Kaiser, N.: On the spatial correlations of Abell clusters. Astrophys. J. 284, L9–L12 (1984)ADSCrossRefGoogle Scholar
  10. Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)ADSCrossRefGoogle Scholar
  11. Maddox, S.J., Efstathiou, G., Sutherland, W.J., Loveday, J.: Galaxy correlations on large scales. Mon. Not. R. Astron. Soc. 242, 43–49 (1990)ADSCrossRefGoogle Scholar
  12. Meszaros, P.: The behaviour of point masses in an expanding cosmological substratum. Astron. Astrophys. 37, 225–228 (1974)ADSGoogle Scholar
  13. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  14. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)ADSMathSciNetCrossRefGoogle Scholar
  15. Percival, W.J., et al.: The shape of the SDSS DR5 galaxy power spectrum. Astrophys. J. 657, 645–663 (2007)ADSCrossRefGoogle Scholar
  16. Piattella, O.F., Martins, D.L.A., Casarini, L.: Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch. JCAP 1410(10), 031 (2014)ADSCrossRefGoogle Scholar
  17. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  18. Weinberg, S.: Cosmological fluctuations of short wavelength. Astrophys. J. 581, 810–816 (2002)ADSCrossRefGoogle Scholar
  19. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  20. Zeldovich, Y.B.: Structure of the Universe. Astrophys. Space Phys. Rev. 3, 1 (1984)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Núcleo Cosmo-UFES and Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations