Advertisement

Inflation

  • Oliver PiattellaEmail author
Chapter
  • 956 Downloads
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

We dedicate this chapter to inflation, a model of the primordial universe in which an almost constant H provides a scale factor a growing exponentially with the cosmic time. Inflation is able to solve some puzzles related to background cosmology and also to provide a testable prediction of the power spectrum of primordial fluctuations. Among the first pioneering works on inflation there are Starobinsky (JETP Lett 30:682–685, 1979), Guth (Phys Rev D 23:347–356, 1981), Linde (Phys Lett 108B:389–393, 1982) and Albrecht and Steinhardt (Phys Rev Lett 48:1220–1223, 1982).

Keywords

Slow-roll Parameters Radiation-dominated Epoch Scalar Spectral Index Horizon Cross Inflaton Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, Illinois (1972)zbMATHGoogle Scholar
  2. Ade, P.A.R., et al.: Planck 2015 results. XX. constraints on inflation. Astron. Astrophys. 594, A20 (2016a)Google Scholar
  3. Ade, P.A.R., et al.: Planck 2015 results. XIII. cosmological parameters. Astron. Astrophys. 594, A13 (2016b)CrossRefGoogle Scholar
  4. Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)ADSCrossRefGoogle Scholar
  5. Bolliet, B., Barrau, A., Martineau, K., Moulin, F.: Some clarifications on the duration of inflation in loop quantum cosmology. Class. Quant. Grav. 34(14), 145003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. Brandenberger, R.H., Martin, J.: Trans-Planckian issues for inflationary cosmology. Class. Quant. Grav. 30, 113001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. Brandenberger, R., Peter, P.: Bouncing cosmologies: progress and problems. Found. Phys. 47(6), 797–850 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)ADSMathSciNetCrossRefGoogle Scholar
  9. Coleman, S.R., Weinberg, E.J.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973)ADSCrossRefGoogle Scholar
  10. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  11. Di Marco, A.: Lyth bound, eternal inflation and future cosmological missions. Phys. Rev. D 96(2), 023511 (2017)ADSCrossRefGoogle Scholar
  12. Guth, A.H.: The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)ADSCrossRefGoogle Scholar
  13. Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2, 164–173 (2009)CrossRefGoogle Scholar
  14. Liddle, A.R., Parsons, P., Barrow, J.D.: Formalizing the slow roll approximation in inflation. Phys. Rev. D 50, 7222–7232 (1994)ADSCrossRefGoogle Scholar
  15. Linde, A.: On the problem of initial conditions for inflation. In: Black Holes, Gravitational Waves and Spacetime Singularities Rome, Italy, 9–12 May 2017Google Scholar
  16. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 108B, 389–393 (1982)ADSCrossRefGoogle Scholar
  17. Lyth, D.H.: What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997)ADSCrossRefGoogle Scholar
  18. Martin, J., Ringeval, C., Trotta, R., Vennin, V.: The best inflationary models after planck. JCAP 1403, 039 (2014)ADSMathSciNetGoogle Scholar
  19. Mukhanov, V.F.: Gravitational instability of the Universe filled with a scalar field. JETP Lett. 41, 493–496 (1985). Pisma Zh. Eksp. Teor. Fiz.41,402(1985)Google Scholar
  20. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)ADSMathSciNetCrossRefGoogle Scholar
  21. Muñoz, J.B., Kovetz, E.D., Raccanelli, A., Kamionkowski, M., Silk, J.: Towards a measurement of the spectral runnings. JCAP 1705, 032 (2017)ADSCrossRefGoogle Scholar
  22. Novello, M., Bergliaffa, S.E.P.: Bouncing cosmologies. Phys. Rept. 463, 127–213 (2008)CrossRefGoogle Scholar
  23. Sasaki, M.: Large scale quantum fluctuations in the inflationary Universe. Prog. Theor. Phys. 76, 1036 (1986)ADSCrossRefGoogle Scholar
  24. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)ADSMathSciNetCrossRefGoogle Scholar
  25. Starobinsky, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979). Pisma Zh. Eksp. Teor. Fiz.30,719(1979)Google Scholar
  26. Tsujikawa, S.: Distinguishing between inflationary models from cosmic microwave background. PTEP 2014(6), 06B104 (2014)Google Scholar
  27. Weinberg, S.: The Quantum Theory of fields: vol. 2. Modern Applications. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  28. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Núcleo Cosmo-UFES and Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations