Advertisement

Cosmological Perturbations

  • Oliver PiattellaEmail author
Chapter
  • 953 Downloads
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

As we have seen in the previous Chapters, the assumption of homogeneous and isotropic universe is very useful and productive, but it is reliable only on very large scales (above 200 Mpc). Its shortcomings become evident when we start to investigate how structures, such as galaxies and their clusters, form, since these are huge deviations from the cosmological principle. In this Chapter we address small deviations from the cosmological principle, considering perturbations in the FLRW metric. This is the starting point of the incredibly difficult task of understanding how structures form in an expanding universe, which ultimately needs powerful machines and numerical simulations.

References

  1. Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016a)CrossRefGoogle Scholar
  2. Bardeen, J.M.: Gauge invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)ADSMathSciNetCrossRefGoogle Scholar
  3. Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale - free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)ADSCrossRefGoogle Scholar
  4. Dodelson, S.: Gravitational Lensing, p. 2017. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  5. Dodelson, S.: Modern Cosmology. Academic Press, Netherlands (2003)Google Scholar
  6. Gorini, V., Kamenshchik, A.Y., Moschella, U., Piattella, O.F., Starobinsky, A.A.: Gauge-invariant analysis of perturbations in Chaplygin gas unified models of dark matter and dark energy. JCAP 0802, 016 (2008)ADSCrossRefGoogle Scholar
  7. Hawking, S.W.: Perturbations of an expanding universe. Astrophys. J. 145, 544–554 (1966)ADSCrossRefGoogle Scholar
  8. Jordan, P., Ehlers, J., Kundt, W.: Republication of: exact solutions of the field equations of the general theory of relativity. Gen. Relativ. Gravit. 41(9), 2191–2280 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)ADSCrossRefGoogle Scholar
  10. Landau, L.D., Lifschits, E.M.: The Classical Theory of Fields. Volume 2 of Course of Theoretical Physics. Pergamon Press, Oxford (1975)Google Scholar
  11. Lesgourgues, J.: The Cosmic Linear Anisotropy Solving System. CLASS) I, Overview (2011)Google Scholar
  12. Lifshitz, E.: On the Gravitational stability of the expanding universe. J. Phys. (USSR) 10, 116 (1946)Google Scholar
  13. Lifshitz, E.M., Khalatnikov, I.M.: Investigations in relativistic cosmology. Adv. Phys. 12, 185–249 (1963)ADSMathSciNetCrossRefGoogle Scholar
  14. Lukash, V.N.: Production of phonons in an isotropic universe. Sov. Phys. JETP 52, 807–814 (1980). [Zh. Eksp. Teor. Fiz.79,1601(1980)]Google Scholar
  15. Ma, C.-P., Bertschinger, E.: Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7–25 (1995)ADSCrossRefGoogle Scholar
  16. Maartens, R.: Causal thermodynamics in relativity(1996)Google Scholar
  17. Malik, K.A., Matravers, D.R.: Comments on gauge-invariance in cosmology. Gen. Relativ. Gravit. 45, 1989–2001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  18. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  19. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992)ADSMathSciNetCrossRefGoogle Scholar
  20. Stewart, J.M.: Perturbations of Friedmann-Robertson-Walker cosmological models. Class. Quantum Gravity 7, 1169–1180 (1990)ADSMathSciNetCrossRefGoogle Scholar
  21. Stewart, J.M., Walker, M.: Perturbations of spacetimes in general relativity. Proc. R. Soc. Lond. A341, 49–74 (1974)ADSCrossRefGoogle Scholar
  22. Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: A new approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  24. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  25. Zimdahl, W.: Bulk viscous cosmology. Phys. Rev. D 53, 5483–5493 (1996)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Núcleo Cosmo-UFES and Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations