Advertisement

Anisotropies in the Cosmic Microwave Background

  • Oliver PiattellaEmail author
Chapter
  • 950 Downloads
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

In this chapter we attack the hierarchy of Boltzmann equations that we have found for photons and present an approximate, semi-analytic solution which will allow us to understand the temperature correlation in the CMB sky and its relation with the cosmological parameters. Our scope is to understand the features of the angular, temperature-temperature power spectrum in Fig. 10.1.

References

  1. Abbott, L.F., Wise, M.B.: Constraints on generalized inflationary cosmologies. Nucl. Phys. B 244, 541–548 (1984)ADSCrossRefGoogle Scholar
  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Dover (1972)Google Scholar
  3. Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)CrossRefGoogle Scholar
  4. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005)ADSCrossRefGoogle Scholar
  5. Hu, W., Sugiyama, N.: Small scale cosmological perturbations: an analytic approach. Astrophys. J. 471, 542–570 (1996)ADSCrossRefGoogle Scholar
  6. Kaiser, N.: Small-angle anisotropy of the microwave background radiation in the adiabatic theory. MNRAS 202, 1169–1180 (1983)ADSCrossRefGoogle Scholar
  7. Landau, L.D., Lifshits, E.M.: Quantum Mechanics. Volume 3 of Course of Theoretical Physics. Butterworth-Heinemann, Oxford (1991)Google Scholar
  8. Ma, C.-P., Bertschinger, E.: Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7–25 (1995)ADSCrossRefGoogle Scholar
  9. Mukhanov, V.F.: CMB-slow, or how to estimate cosmological parameters by hand. Int. J. Theor. Phys. 43, 623–668 (2004)CrossRefGoogle Scholar
  10. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  11. Racah, G.: Theory of complex spectra. II. Phys. Rev. 62(9–10), 438 (1942)ADSCrossRefGoogle Scholar
  12. Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 (1967)ADSCrossRefGoogle Scholar
  13. Seljak, U., Zaldarriaga, M.: A line of sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437–444 (1996)ADSCrossRefGoogle Scholar
  14. Silk, J.: Fluctuations in the primordial fireball. Nature 215(5106), 1155–1156 (1967)ADSCrossRefGoogle Scholar
  15. Wands, D., Piattella, O.F., Casarini, L.: Physics of the cosmic microwave background radiation. Astrophys. Space Sci. Proc. 45, 3–39 (2016)ADSCrossRefGoogle Scholar
  16. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  17. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Núcleo Cosmo-UFES and Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations