Skip to main content

Hybrid Imaging for Male Malignancies

  • Chapter
  • First Online:
  • 2442 Accesses

Abstract

Prostate carcinoma is the most common life-threatening cancer affecting men in the Western world. Rates of detection vary, with a lower prevalence in South and East Asia than in Europe and the United States [1]. Prostate carcinoma is more common in men over the age of 50 (with ~1% occurring in mid <50 years of age); it is diagnosed in 80% of men by the age of 80.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.roswellpark.org/cancer/prostate/prevention-early-detection/screening/history-psa

References

  1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    PubMed  Google Scholar 

  2. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46:1356–67.

    PubMed  Google Scholar 

  3. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243:28–53.

    PubMed  Google Scholar 

  4. Zukotynski KA, Kim CK, Gerbaudo VH, Hainer J, Taplin ME, Kantoff P, et al. 18F-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging. 2015;5:72–82.

    CAS  PubMed  Google Scholar 

  5. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol. 1996;155:994–8.

    CAS  PubMed  Google Scholar 

  6. Effert P, Beniers AJ, Tamimi Y, Handt S, Jakse G. Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res. 2004;24:3057–63.

    CAS  PubMed  Google Scholar 

  7. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:BP99–106.

    PubMed  Google Scholar 

  8. Gnanasegaran G, Cook G, Adamson K, Fogelman I. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med. 2009;39:380–95.

    PubMed  Google Scholar 

  9. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58.

    PubMed  Google Scholar 

  10. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med. 2006;36:73–92.

    PubMed  Google Scholar 

  11. Fuccio C, Schiavina R, Castellucci P, Rubello D, Martorana G, Celli M, et al. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging. 2011;38:1985–9.

    CAS  PubMed  Google Scholar 

  12. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33:1387–98.

    PubMed  Google Scholar 

  13. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR. Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol. 1998;159:1247–50.

    CAS  PubMed  Google Scholar 

  14. Igerc I, Kohlfurst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:976–83.

    CAS  PubMed  Google Scholar 

  15. Kwee SA, Coel MN, Ly BH, Lim J. 18F-Choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med. 2009;23:541–8.

    CAS  PubMed  Google Scholar 

  16. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  17. Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–34.

    PubMed  Google Scholar 

  18. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    CAS  PubMed  Google Scholar 

  19. Verburg FA, Krohn T, Heinzel A, Mottaghy FM, Behrendt FF. First evidence of PSMA expression in differentiated thyroid cancer using [68Ga]PSMA-HBED-CC PET/CT. Eur J Nucl Med Mol Imaging. 2015;42:1622–3.

    PubMed  Google Scholar 

  20. Demirci E, Ocak M, Kabasakal L, Decristoforo C, Talat Z, Halac M, et al. 68Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:1461–2.

    PubMed  Google Scholar 

  21. Krohn T, Verburg FA, Pufe T, Neuhuber W, Vogg A, Heinzel A, et al. [68Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42:210–4.

    PubMed  Google Scholar 

  22. Artigas C, Alexiou J, Garcia C, Wimana Z, Otte FX, Gil T, et al. Paget bone disease demonstrated on 68Ga-PSMA ligand PET/CT. Eur J Nucl Med Mol Imaging. 2016;43:195–6.

    CAS  PubMed  Google Scholar 

  23. Verburg FA, Pfister D, Heidenreich A, Vogg A, Drude NI, Voo S, et al. Extent of disease in recurrent prostate cancer determined by [68Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging. 2016;43:397–403.

    CAS  PubMed  Google Scholar 

  24. Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. 2016;70:553–7.

    CAS  PubMed  Google Scholar 

  25. Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M, et al. Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:2114–21.

    CAS  PubMed  Google Scholar 

  26. Rahbar K, Schmidt M, Heinzel A, Eppard E, Bode A, Yordanova A, et al. Response and tolerability of a single dose of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: a multicenter retrospective analysis. J Nucl Med. 2016;57:1334–8.

    CAS  PubMed  Google Scholar 

  27. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-Labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57:1006–13.

    CAS  PubMed  Google Scholar 

  28. Ahmadzadehfar H, Eppard E, Kurpig S, Fimmers R, Yordanova A, Schlenkhoff CD, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7:12477–88.

    PubMed  PubMed Central  Google Scholar 

  29. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829–36.

    CAS  PubMed  Google Scholar 

  30. Heck MM, Retz M, Tauber R, Knorr K, Kratochwil C, Eiber M. [PSMA-targeted radioligand therapy in prostate cancer]. Der Urologe Ausg A. 2017;56:32–39

    Google Scholar 

  31. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3 18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48:46–55.

    CAS  PubMed  Google Scholar 

  32. Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutane carboxylic acid in human prostate cancer. J Nucl Med. 2011;52:822–9.

    CAS  PubMed  Google Scholar 

  33. Sorensen J, Owenius R, Lax M, Johansson S. Regional distribution and kinetics of 18F-fluciclovine (anti-18F-FABC) a tracer of amino acid transport, in subject with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:394–402.

    PubMed  Google Scholar 

  34. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.

    CAS  PubMed  Google Scholar 

  35. Asano Y, Inoue Y, Ikeda Y, Kikuchi K, Hara T, Taguchi C, et al. Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med. 2011;25:414–8.

    CAS  PubMed  Google Scholar 

  36. McParland BJ, Wall A, Johansson S, Sørensen J. The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2013;40:1256–64.

    CAS  PubMed  Google Scholar 

  37. Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F-FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 2014;(3):849–56.

    Google Scholar 

  38. Kairemo K, Rasulova N, Partanen K, et al. Preliminary clinical experience of trans-1-amino-3-18Ffluocyclobutanecarboxylic acid (anti-18F-FACBC)-PET/CT image in prostate cancer patients. Biomed Res Int. 2014;2014:305182. https://doi.org/10.1155/2014/305182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Odewole OA, Tade FI, Nieh PT, et al. Recurrent prostate cancer detection with anti-3 18F-FACB PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43:1773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanni C, Schiavina R, Brunocilla E, Boschi S, Borghesi M, Zanoni L, et al. 18F-fluciclovine PET/CT for the detection of prostate cancer relapse: a comparison to 11C-choline PET/CT. Clin Nucl Med. 2015;40:386–91.

    Google Scholar 

  41. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18F-FACBC (anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43:1601–10.

    CAS  PubMed  Google Scholar 

  42. Zhao JY, Ma XL, Li YY, Zhang BL, Li MM, Ma XL, et al. Diagnostic accuracy of 18F-FDG-PET in patients with testicular cancer: a meta-analysis. Asian Pac J Cancer Prev. 2014;15:3525–31.

    PubMed  Google Scholar 

  43. Cook GJ, Sohaib A, Huddart RA, Dearnaley DP, Horwich A, Chua S. The role of 18F-FDG PET/CT in the management of testicular cancers. Nucl Med Commun. 2015;36:702–8.

    CAS  PubMed  Google Scholar 

  44. Tsatalpas P, Beuthien-Baumann B, Kropp J, Manseck A, Tiepolt C, Hakenberg OW, et al. Diagnostic value of 18F-FDG positron emission tomography for detection and treatment control of malignant germ cell tumors. Urol Int. 2002;68:157–63.

    PubMed  Google Scholar 

  45. de Wit M, Brenner W, Hartmann M, Kotzerke J, Hellwig D, Lehmann J, et al. [18F]-FDG-PET in clinical stage I/II non-seminomatous germ cell tumours: results of the German multicentre trial. Ann Oncol. 2008;19:1619–23.

    PubMed  Google Scholar 

  46. Hain SF, O’Doherty MJ, Timothy AR, Leslie MD, Harper PG, Huddart RA. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer. 2000;83:863–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajpert-De Meyts E, McGlynn KA, Okamoto K, Jewett MA, Bokemeyer C. Testicular germ cell tumours. Lancet. 2016;387:1762–74.

    PubMed  Google Scholar 

  48. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol. 2004;22:1034–9.

    PubMed  Google Scholar 

  49. Becherer A, De Santis M, Karanikas G, Szabo M, Bokemeyer C, Dohmen BM, et al. FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur J Radiol. 2005;54:284–8.

    PubMed  Google Scholar 

  50. Secil M, Altay C, Basara I. State of the art in germ cell tumor imaging. Urol Oncol. 2016;34:156–64.

    PubMed  Google Scholar 

  51. Bachner M, Loriot Y, Gross-Goupil M, Zucali PA, Horwich A, Germa-Lluch JR, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. Ann Oncol. 2012;23:59–64.

    CAS  PubMed  Google Scholar 

  52. Albers P, Albrecht W, Algaba F, Bokemeyer C, Cohn-Cedermark G, Fizazi K, et al. Guidelines on testicular cancer: 2015 update. Eur Urol. 2015;68:1054–68.

    PubMed  Google Scholar 

  53. Hinz S, Schrader M, Kempkensteffen C, Bares R, Brenner W, Krege S, et al. The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. J Urol. 2008;179:936–940; discussion 940.

    Google Scholar 

  54. Gerl A, Clemm C, Schmeller N, Dienemann H, Weiss M, Kriegmair M, et al. Sequential resection of residual abdominal and thoracic masses after chemotherapy for metastatic non-seminomatous germ cell tumours. Br J Cancer. 1994;70:960–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartmann JT, Schmoll HJ, Kuczyk MA, Candelaria M, Bokemeyer C. Postchemotherapy resections of residual masses from metastatic non-seminomatous testicular germ cell tumors. Ann Oncol. 1997;8:531–8.

    CAS  PubMed  Google Scholar 

  56. Oechsle K, Hartmann M, Brenner W, Venz S, Weissbach L, Franzius C, et al. [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol. 2008;26:5930–5.

    PubMed  Google Scholar 

  57. Quak E, Kovacs I, Oyen WJ, van der Graaf WT. FDG-PET/CT in a patient with poor-risk non-seminoma testis with mature teratoma and secondary gliosarcoma: multimodality imaging for guiding multimodality treatment. Nucl Med Mol Imaging. 2015;49:237–40.

    PubMed  PubMed Central  Google Scholar 

  58. Coleman RE, Hillner BE, Shields AF, Duan F, Merlino DA, Hanna LG, et al. PET and PET/CT reports: observations from the National Oncologic PET Registry. J Nucl Med. 2010;51:158–63.

    PubMed  Google Scholar 

  59. Disibio G, French SW. Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med. 2008;132:931–9.

    PubMed  Google Scholar 

  60. Richie JP. Re: Interim 18F-Fluorodeoxyglucose positron emission tomography for early metabolic assessment of response to cisplatin, etoposide, and bleomycin chemotherapy for metastatic seminoma: clinical value and future directions. J Urol. 2017;198:106.

    CAS  PubMed  Google Scholar 

  61. Hakenberg OW, Comperat EM, Minhas S, Necchi A, Protzel C, Watkin N, et al. EAU guidelines on penile cancer: 2014 update. Eur Urol. 2015;67:142–50.

    PubMed  Google Scholar 

  62. Kochhar R, Taylor B, Sangar V. Imaging in primary penile cancer: current status and future directions. Eur Radiol. 2010;20:36–47.

    PubMed  Google Scholar 

  63. Mueller-Lisse UG, Scher B, Scherr MK, Seitz M. Functional imaging in penile cancer: PET/computed tomography, MRI, and sentinel lymph node biopsy. Curr Opin Urol. 2008;18:105–10.

    PubMed  Google Scholar 

  64. Spiess PE, Izawa JI, Bassett R, Kedar D, Busby JE, Wong F, et al. Preoperative lymphoscintigraphy and dynamic sentinel node biopsy for staging penile cancer: results with pathological correlation. J Urol. 2007;177:2157–61.

    PubMed  Google Scholar 

  65. Scher B, Seitz M, Reiser M, Hungerhuber E, Hahn K, Tiling R, et al. 18F-FDG PET/CT for staging of penile cancer. J Nucl Med. 2005;46:1460–5.

    PubMed  Google Scholar 

  66. Graafland NM, Leijte JA, Valdes Olmos RA, Hoefnagel CA, Teertstra HJ, Horenblas S. Scanning with 18F-FDG-PET/CT for detection of pelvic nodal involvement in inguinal node-positive penile carcinoma. Eur Urol. 2009;56:339–45.

    PubMed  Google Scholar 

  67. Mobilio G, Ficarra V. Genital treatment of penile carcinoma. Curr Opin Urol. 2001;11:299–304.

    CAS  PubMed  Google Scholar 

  68. Dimopoulos P, Christopoulos P, Shilito S, Gall Z, Murby B, Ashworth D, et al. Dynamic sentinel lymph node biopsy for penile cancer: a comparison between 1- and 2-day protocols. BJU Int. 2016;117:890–6.

    PubMed  Google Scholar 

  69. Lutzen U, Zuhayra M, Marx M, Zhao Y, Colberg C, Knupfer S, et al. Value and efficiency of sentinel lymph node diagnostics in patients with penile carcinoma with palpable inguinal lymph nodes as a new multimodal, minimally invasive approach. Eur J Nucl Med Mol Imaging. 2016;43:2313–23.

    PubMed  Google Scholar 

  70. Schlenker B, Scher B, Tiling R, Siegert S, Hungerhuber E, Gratzke C, et al. Detection of inguinal lymph node involvement in penile squamous cell carcinoma by 18F-fluorodeoxyglucose PET/CT: a prospective single-center study. Urol Oncol. 2012;30:55–9.

    PubMed  Google Scholar 

  71. Graafland NM, Lam W, Leijte JA, Yap T, Gallee MP, Corbishley C, et al. Prognostic factors for occult inguinal lymph node involvement in penile carcinoma and assessment of the high-risk EAU subgroup: a two-institution analysis of 342 clinically node-negative patients. Eur Urol. 2010;58:742–7.

    PubMed  Google Scholar 

  72. Graafland NM, Valdes Olmos RA, Teertstra HJ, Kerst JM, Bergman AM, Horenblas S. 18F-FDG PET/CT for monitoring induction chemotherapy in patients with primary inoperable penile carcinoma: first clinical results. Eur J Nucl Med Mol Imaging. 2010;37:1474–80.

    CAS  PubMed  Google Scholar 

  73. Lont AP, Kroon BK, Gallee MP, van Tinteren H, Moonen LM, Horenblas S. Pelvic lymph node dissection for penile carcinoma: extent of inguinal lymph node involvement as an indicator for pelvic lymph node involvement and survival. J Urol. 2007;177:947–952; discussion 952.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abedallatif A. AlSharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ibraheem, A., Al Zreiqat, A.S., Chiacchio, S., AlSharif, A.A. (2019). Hybrid Imaging for Male Malignancies. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics