Skip to main content

Hybrid Imaging and Radionuclide Therapy in Hemato-oncology

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

Lymphomas are hematologic malignancies characterized by abnormal proliferation of lymphoid cells, most commonly arising in lymph nodes, but potentially involving any organ or tissue in the body. Several classification systems have been proposed for lymphomas. Classification of a lymphoma under a certain category can affect treatment and prognosis. Common features considered for classifying lymphomas generally include: (i) whether or not it is a Hodgkin lymphoma; (ii) whether the abnormally replicating cell is a T cell or B cell; and (iii) site where the malignant cell arises.Multiple myeloma (MM) is the most common primary bone cancer. The clonal proliferation of malignant plasma cells in the bone marrow may result both in local growth and in systemic effects due to the overproduction of a monoclonal protein (M-protein). Almost all patients evolve from an asymptomatic premalignant stage, termed monoclonal gammopathy of undetermined significance (MGUS), through the smoldering myeloma (SMM), and eventually to “malignant” MM. MM differs from MGUS and SMM by the presence of end-organ damage associated with a complex syndrome named CRAB. MM, MGUS and smoldering myeloma (SMM) are defined according to the updated version of the criteria for the diagnosis of plasma cell proliferative disorders established by the International Myeloma Working Group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin T. On some morbid appearances of the absorbent glands and spleen. Med Chir Trans. 1832;17:68–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    PubMed  Google Scholar 

  3. Horning SJ. Hodgkin’s lymphoma. In: Abeloff M, Armitage J, Niederhuber J, Kastan MB, McKenna WG, editors. Abeloff’s clinical oncology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2008. p. 2353–70.

    Google Scholar 

  4. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148:728–36.

    PubMed  Google Scholar 

  5. Cotran RS, Kumar V, Robbins SL. Diseases of white cells, lymph nodes, and spleen. In: Cotran RS, Kumar V, Robbins SL, editors. Pathologic basis of disease. 5th ed. Philadelphia: Saunders Company; 1994.

    Google Scholar 

  6. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    PubMed  PubMed Central  Google Scholar 

  7. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.

    PubMed  PubMed Central  Google Scholar 

  8. Hasenclever D, Dihel V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14.

    CAS  PubMed  Google Scholar 

  9. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood. 2006;107(1):265–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimabukuro-Vornhagen A, Haverkamp H, Engert A, Balleisen L, Majunke P, Heil G, et al. Lymphocyte-rich classical Hodgkin’s lymphoma: clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s Study Group trials. J Clin Oncol. 2005;23:5739–45.

    PubMed  Google Scholar 

  11. Xing KH, Connors JM, Lai A, Al-Mansour M, Sehn LH, Villa D, et al. Advanced-stage nodular lymphocyte predominant Hodgkin lymphoma compared with classical Hodgkin lymphoma: a matched pair outcome analysis. Blood. 2014;123(23):3567–73.

    CAS  PubMed  Google Scholar 

  12. Engert A, Plütschow A, Eich HT, Lohri A, Dörken B, Borchmann P, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363:2220–7.

    PubMed  Google Scholar 

  13. Specht L, Yahalom J, Illidge T, Berthelsen AK, Constine LS, Eich HT, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89:854–62.

    PubMed  Google Scholar 

  14. Wirth A, Yuen K, Barton M, Roos D, Gogna K, Pratt G, et al. Long-term outcome after radiotherapy alone for lymphocyte-predominant Hodgkin lymphoma: a retrospective multicenter study of the Australasian Radiation Oncology Lymphoma Group. Cancer. 2005;104(6):1221–9.

    PubMed  Google Scholar 

  15. Hoppe RT, Advani RH, Ai WZ, Ambinder RF, Aoun P, Bello CM, et al. Hodgkin Lymphoma Version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(5):608–38.

    Google Scholar 

  16. Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program. 2009;2009:523–31.

    Google Scholar 

  17. Kridel R, Mottok A, Farinha P, Ben-Neriah S, Ennishi D, Zheng Y, et al. Cell of origin of transformed follicular lymphoma. Blood. 2015;126(18):2118–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.

    CAS  PubMed  Google Scholar 

  20. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90.

    Google Scholar 

  21. Zhou Z, Sehn LH, Rademaker AW, Gordon LI, Lacasce AS, Crosby-Thompson A, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–42.

    CAS  PubMed  Google Scholar 

  22. Horwitz SM, Zelenetz AD, Gordon LI, Wierda WG, Abramson JS, Advani RH, et al. NCCN guidelines insights: non-Hodgkin’s lymphomas, Version 3.2016. J Natl Compr Cancer Netw. 2016;14(9):1067–79.

    Google Scholar 

  23. Friedberg JW, Fischman A, Neuberg D, Kim H, Takvorian T, Ng AK, et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma. 2004;45(1):85–92.

    PubMed  Google Scholar 

  24. Tsukamoto N, Kojima M, Hasegawa M, Oriuchi N, Matsushima T, Yokohama A, et al. The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110(3):652–9.

    PubMed  Google Scholar 

  25. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244.

    CAS  PubMed  Google Scholar 

  26. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6.

    CAS  PubMed  Google Scholar 

  27. Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30.

    PubMed  Google Scholar 

  28. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.

    PubMed  Google Scholar 

  29. Schoder H, Noy A, Gonen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(21):4643–51.

    PubMed  Google Scholar 

  30. Michallet AS, Sesques P, Rabe KG, Itti E, Tordot J, Tychyj-Pinel C, et al. An 18F-FDG-PET maximum standardized uptake value > 10 represents a novel valid marker for discerning Richter’s Syndrome. Leuk Lymphoma. 2016;57(6):1474–7.

    PubMed  Google Scholar 

  31. Bodet-Milin C, Kraeber-Bodere F, Moreau P, Campion L, Dupas B, Le Gouill S. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93(3):471–2.

    PubMed  Google Scholar 

  32. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    PubMed  Google Scholar 

  33. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    CAS  PubMed  Google Scholar 

  34. Lartizien C, Rogez M, Niaf E, Ricard F. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform. 2014;18(3):946–55.

    CAS  PubMed  Google Scholar 

  35. Bodet-Milin C, Eugene T, Gastinne T, Bailly C, Le Gouill S, Dupas B, et al. The role of FDG-PET scanning in assessing lymphoma in 2012. Diagn Interv Imaging. 2013;94(2):158–68.

    CAS  PubMed  Google Scholar 

  36. Schoder H, Meta J, Yap C, Ariannejad M, Rao J, Phelps ME, et al. Effect of whole-body 18F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J Nucl Med. 2001;42(8):1139–43.

    CAS  PubMed  Google Scholar 

  37. Karam M, Novak L, Cyriac J, Ali A, Nazeer T, Nugent F. Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer. 2006;107(1):175–83.

    PubMed  Google Scholar 

  38. El-Galaly TC, d’Amore F, Mylam KJ, de Nully Brown P, Bogsted M, Bukh A, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.

    PubMed  Google Scholar 

  39. Adams HJ, Kwee TC, de Keizer B, Fijnheer R, de Klerk JM, Nievelstein RA. FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2014;41(3):565–74.

    CAS  PubMed  Google Scholar 

  40. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology. 2005;237(2):627–34.

    PubMed  Google Scholar 

  41. Juweid ME, Wiseman GA, Vose JM, Ritchie JM, Menda Y, Wooldridge JE, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61.

    PubMed  Google Scholar 

  42. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86.

    PubMed  Google Scholar 

  43. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma. 2009;50(8):1257–60.

    PubMed  Google Scholar 

  44. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M, et al. International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90.

    CAS  PubMed  Google Scholar 

  45. Itti E, Meignan M, Berriolo-Riedinger A, Biggi A, Cashen AF, Vera P, et al. An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and DeltaSUVmax. Eur J Nucl Med Mol Imaging. 2013;40(9):1312–20.

    PubMed  Google Scholar 

  46. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    PubMed  Google Scholar 

  47. Spaepen K, Stroobants S, Dupont P, Thomas J, Vandenberghe P, Balzarini J, et al. Can positron emission tomography with [18F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol. 2001;115(2):272–8.

    CAS  PubMed  Google Scholar 

  48. Kasamon YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007;48(Suppl 1):19S–27S.

    CAS  PubMed  Google Scholar 

  49. Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahl RL. Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med. 2006;47(4):603–8.

    CAS  PubMed  Google Scholar 

  50. Castellucci P, Zinzani P, Nanni C, Farsad M, Moretti A, Alinari L, et al. 18F-FDG PET early after radiotherapy in lymphoma patients. Cancer Biother Radiopharm. 2004;19(5):606–12.

    PubMed  Google Scholar 

  51. Jacene HA, Filice R, Kasecamp W, Wahl RL. 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med. 2009;50(1):8–17.

    CAS  PubMed  Google Scholar 

  52. Horning SJ, Juweid ME, Schoder H, Wiseman G, McMillan A, Swinnen LJ, et al. Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood. 2010;115(4):775–7; quiz 918.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin’s lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med. 2000;41(6):999–1005.

    CAS  PubMed  Google Scholar 

  54. Kostakoglu L, Schoder H, Johnson JL, Hall NC, Schwartz LH, Straus DJ, et al. Interim [18F]fluorodeoxyglucose positron emission tomography imaging in stage I–II non-bulky Hodgkin lymphoma: would using combined positron emission tomography and computed tomography criteria better predict response than each test alone? Leuk Lymphoma. 2012;53(11):2143–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator in the treatment of aggressive Non-Hodgkin’s Lymphoma-comparison with CT. Leuk Lymphoma. 2000;39(5–6):543–53.

    CAS  PubMed  Google Scholar 

  56. Kasamon YL, Wahl RL, Ziessman HA, Blackford AL, Goodman SN, Fidyk CA, et al. Phase II study of risk-adapted therapy of newly diagnosed, aggressive non-Hodgkin lymphoma based on midtreatment FDG-PET scanning. Biol Blood Marrow Transplant. 2009;15(2):242–8.

    PubMed  PubMed Central  Google Scholar 

  57. Barrington SF, Qian W, Somer EJ, Franceschetto A, Bagni B, Brun E, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.

    PubMed  Google Scholar 

  58. Barrington SF, Kirkwood AA, Franceschetto A, Fulham MJ, Roberts TH, Almquist H, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016;127(12):1531–8.

    CAS  PubMed  Google Scholar 

  59. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13.

    PubMed  PubMed Central  Google Scholar 

  60. Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47(6):1059–66.

    CAS  PubMed  Google Scholar 

  61. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35(12):2320–33.

    PubMed  Google Scholar 

  62. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    CAS  PubMed  Google Scholar 

  63. Ceriani L, Suriano S, Ruberto T, Zucca E, Giovanella L. 18F-FDG uptake changes in liver and mediastinum during chemotherapy in patients with diffuse large B-cell lymphoma. Clin Nucl Med. 2012;37(10):949–52.

    PubMed  Google Scholar 

  64. Bagci U, Yao J, Miller-Jaster K, Chen X, Mollura DJ. Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. PLoS One. 2013;8(2):e57105.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ben Bouallègue F, Tabaa YA, Kafrouni M, Cartron G, Vauchot F, Mariano-Goulart D. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys. 2017;44(9):4608–19.

    PubMed  Google Scholar 

  66. Hanaoka K, Hosono M, Tatsumi Y, Ishii K, Im SW, Tsuchiya N, et al. Heterogeneity of intratumoral 111In-ibritumomab tiuxetan and 18F-FDG distribution in association with therapeutic response in radioimmunotherapy for B-cell non-Hodgkin’s lymphoma. EJNMMI Res. 2015;5:10.

    PubMed  PubMed Central  Google Scholar 

  67. Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother Rep. 1964;35:1–111.

    CAS  PubMed  Google Scholar 

  68. Kasamon YL, Wahl RL. FDG PET and risk-adapted therapy in Hodgkin’s and non-Hodgkin’s lymphoma. Curr Opin Oncol. 2008;20(2):206–19.

    PubMed  PubMed Central  Google Scholar 

  69. Kobe C, Kuhnert G, Kahraman D, Haverkamp H, Eich HT, Franke M, et al. Assessment of tumor size reduction improves outcome prediction of positron emission tomography/computed tomography after chemotherapy in advanced-stage Hodgkin lymphoma. J Clin Oncol. 2014;32(17):1776–81.

    PubMed  Google Scholar 

  70. Straus DJ, Pitcher B, Kostakoglu L, et al. Initial results of US intergroup trial of response-adapted chemotherapy or chemotherapy/radiation therapy based on PET for non-bulky stage I and II Hodgkin lymphoma (CALGB/Alliance 50604). Blood. 2015;126:578.

    Google Scholar 

  71. Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.

    CAS  PubMed  Google Scholar 

  72. André MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94.

    PubMed  Google Scholar 

  73. Cashen AF, Dehdashti F, Luo J, Homb A, Siegel BA, Bartlett NL. 18F-FDG PET/CT for early response assessment in diffuse large B-cell lymphoma: poor predictive value of international harmonization project interpretation. J Nucl Med. 2011;52(3):386–92.

    PubMed  Google Scholar 

  74. Pregno P, Chiappella A, Bello M, Botto B, Ferrero S, Franceschetti S, et al. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood. 2012;119(9):2066–73.

    CAS  PubMed  Google Scholar 

  75. Moskowitz CH, Schoder H, Teruya-Feldstein J, Sima C, Iasonos A, Portlock CS, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28(11):1896–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Swinnen LJ, Li H, Quon A, Gascoyne R, Hong F, Ranheim EA, et al. Response-adapted therapy for aggressive non-Hodgkin’s lymphomas based on early [18F]FDG-PET scanning: ECOG-ACRIN Cancer Research Group study (E3404). Br J Haematol. 2015;170(1):56–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zelenetz AD, Abramson JS, Advani RH, Andreadis CB, Byrd JC, Czuczman MS, et al. NCCN clinical practice guidelines in oncology: non-Hodgkin’s lymphomas. J Natl Compr Cancer Netw. 2010;8(3):288–334.

    Google Scholar 

  78. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48(10):1626–32.

    PubMed  Google Scholar 

  79. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoos A, Wolchok JD, Humphrey RW, Hodi FS. CCR 20th Anniversary Commentary: Immune-related response criteria - capturing clinical activity in immuno-oncology. Clin Cancer Res. 2015;21(22):4989–91.

    CAS  PubMed  Google Scholar 

  81. Kirienko M, Sollini M, Chiti A. Hodgkin lymphoma and imaging in the era of anti‐PD‐1/PD‐L1 therapy. Clin Transl Imaging. 2018;6(6):417–27.

    Google Scholar 

  82. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96.

    CAS  PubMed  Google Scholar 

  83. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9.

    PubMed  PubMed Central  Google Scholar 

  84. Illidge T, Specht L, Yahalom J, Aleman B, Berthelsen AK, Constine L, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49–58.

    PubMed  Google Scholar 

  85. Girinsky T, Auperin A, Ribrag V, Elleuch M, Ferme C, Bonniaud G, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys. 2014;89(5):1047–52.

    PubMed  Google Scholar 

  86. Terezakis SA, Schoder H, Kowalski A, McCann P, Lim R, Turlakov A, et al. A prospective study of 18FDG-PET with CT coregistration for radiation treatment planning of lymphomas and other hematologic malignancies. Int J Radiat Oncol Biol Phys. 2014;89(2):376–83.

    PubMed  PubMed Central  Google Scholar 

  87. Bird D, Patel C, Scarsbrook AF, Cosgrove V, Thomas E, Gilson D, et al. Evaluation of clinical target volume expansion required for involved site neck radiotherapy for lymphoma to account for the absence of a pre-chemotherapy PET-CT in the radiotherapy treatment position. Radiother Oncol. 2017;124(1):161–7.

    PubMed  Google Scholar 

  88. Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):169–74.

    PubMed  Google Scholar 

  89. Kriz J, Spickermann M, Lehrich P, Schmidberger H, Reinartz G, Eich H, et al. Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin’s lymphoma: comparison of ILROG IS-RT and the GHSG IF-RT. Strahlenther Onkol. 2015;191(9):717–25.

    PubMed  Google Scholar 

  90. Petersen PM, Aznar MC, Berthelsen AK, Loft A, Schut DA, Maraldo M, et al. Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma: benefit of deep inspiration breath-hold. Acta Oncol. 2015;54(1):60–6.

    CAS  PubMed  Google Scholar 

  91. Jerusalem G, Beguin Y, Fassotte MF, Belhocine T, Hustinx R, Rigo P, et al. Early detection of relapse by whole-body positron emission tomography in the follow-up of patients with Hodgkin’s disease. Ann Oncol. 2003;14(1):123–30.

    CAS  PubMed  Google Scholar 

  92. Rhodes MM, Delbeke D, Whitlock JA, Martin W, Kuttesch JF, Frangoul HA, et al. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2006;28(5):300–6.

    PubMed  Google Scholar 

  93. Levine JM, Weiner M, Kelly KM. Routine use of PET scans after completion of therapy in pediatric Hodgkin disease results in a high false positive rate. J Pediatr Hematol Oncol. 2006;28(11):711–4.

    PubMed  Google Scholar 

  94. Zinzani PL, Stefoni V, Tani M, Fanti S, Musuraca G, Castellucci P, et al. Role of [18F]fluorodeoxyglucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol. 2009;27(11):1781–7.

    PubMed  Google Scholar 

  95. Petrausch U, Samaras P, Haile SR, Veit-Haibach P, Soyka JD, Knuth A, et al. Risk-adapted FDG-PET/CT-based follow-up in patients with diffuse large B-cell lymphoma after first-line therapy. Ann Oncol. 2010;21(8):1694–8.

    CAS  PubMed  Google Scholar 

  96. Nuutinen J, Leskinen S, Lindholm P, Soderstrom KO, Nagren K, Huhtala S, et al. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med. 1998;25(7):729–35.

    CAS  PubMed  Google Scholar 

  97. Sutinen E, Jyrkkio S, Varpula M, Lindholm P, Gronroos T, Lehikoinen P, et al. Nodal staging of lymphoma with whole-body PET: comparison of [11C]Methionine and FDG. J Nucl Med. 2000;41(12):1980–8.

    CAS  PubMed  Google Scholar 

  98. Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother Radiopharm. 2004;19(4):436–42.

    CAS  PubMed  Google Scholar 

  99. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.

    CAS  PubMed  Google Scholar 

  100. Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M, et al. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma. 2007;48(4):746–53.

    PubMed  Google Scholar 

  101. Schoder H, Zelenetz AD, Hamlin P, Gavane S, Horwitz S, Matasar M, et al. Prospective study of 3′-deoxy-3′-18F-fluorothymidine PET for early interim response assessment in advanced-stage B-cell lymphoma. J Nucl Med. 2016;57(5):728–34.

    CAS  PubMed  Google Scholar 

  102. Sfakianakis GN, DeLand FH. Radioimmunodiagnosis and radioimmunotherapy, 1982. J Nucl Med. 1982;23:840–50.

    CAS  PubMed  Google Scholar 

  103. Rosen ST, Winter JN, Epstein AL. Application of monoclonal antibodies to tumor diagnosis and therapy. Ann Clin Lab Sci. 1983;13:173–84.

    CAS  PubMed  Google Scholar 

  104. Roselli M, Guadagni F, Buonomo O, Belardi A, Ferroni P, Diodati A, et al. Tumor markers as targets for selective diagnostic and therapeutic procedures. Anticancer Res. 1996;16:2187–92.

    CAS  PubMed  Google Scholar 

  105. Mirick GR, Bradt BM, Denardo SJ, Denardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging. 2004;48:251–7.

    CAS  PubMed  Google Scholar 

  106. Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63:1424–33.

    CAS  PubMed  Google Scholar 

  107. Tedder TF, Boyd AW, Freedman AS, Nadler LM, Schlossman SF. The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol. 1985;135:973–9.

    CAS  PubMed  Google Scholar 

  108. Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, et al. Binding to CD20 by anti-B1 antibody or F(ab′)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother. 2002;51:15–24.

    CAS  PubMed  Google Scholar 

  109. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125:1678–85.

    CAS  PubMed  Google Scholar 

  110. Wagner HN Jr, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM, et al. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43:267–72.

    CAS  PubMed  Google Scholar 

  111. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    CAS  PubMed  Google Scholar 

  112. Hochster H, Weller E, Gascoyne RD, Habermann TM, Gordon LI, Ryan T, et al. Maintenance rituximab after cyclophosphamide, vincristine, and prednisone prolongs progression-free survival in advanced indolent lymphoma: results of the randomized phase III ECOG1496 study. J Clin Oncol. 2009;27:1607–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40:122–35.

    PubMed  Google Scholar 

  114. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the international, randomized, phase III first-line indolent trial. J Clin Oncol. 2013;31:1977–83.

    CAS  PubMed  Google Scholar 

  115. Rizzieri D. Zevalin® (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol. 2016;105:5–17.

    PubMed  Google Scholar 

  116. Shimoni A, Zwas ST. Radioimmunotherapy and autologous stem-cell transplantation in the treatment of B-cell non-Hodgkin lymphoma. Semin Nucl Med. 2016;46(2):119–25.

    PubMed  Google Scholar 

  117. Mondello P, Cuzzocrea S, Navarra M, Mian M. 90 Y-ibritumomab tiuxetan: a nearly forgotten opportunity. Oncotarget. 2016;7(7):7597–609.

    PubMed  Google Scholar 

  118. Jacene HL, Tirumani S, Wahl RL. Radionuclide therapy of lymphomas. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology - from pathophysiology to clinical applications. New York: Springer; 2017. p. 1141–56.

    Google Scholar 

  119. Puvvada SD, Guillén-Rodríguez JM, Yan J, Inclán L, Heard K, Rivera XI, et al. Yttrium-90-Ibritumomab tiuxetan (Zevalin®) radioimmunotherapy after cytoreduction with ESHAP chemotherapy in patients with relapsed follicular non-Hodgkin lymphoma: final results of a phase II study. Oncology. 2018; https://doi.org/10.1159/000486788.

  120. Conti PS, White C, Pieslor P, Molina A, Aussie J, Foster P. The role of imaging with 111In-ibritumomab tiuxetan in the ibritumomab tiuxetan (Zevalin) regimen: results from a Zevalin Imaging Registry. J Nucl Med. 2005;46:1812–8.

    CAS  PubMed  Google Scholar 

  121. Vose JM, Bierman PJ, Loberiza FR Jr, Bociek RG, Matso D, Armitage JO. Phase I trial of 90Y-ibritumomab tiuxetan in patients with relapsed B-cell non-Hodgkin’s lymphoma following high-dose chemotherapy and autologous stem cell transplantation. Leuk Lymphoma. 2007;48:683–90.

    CAS  PubMed  Google Scholar 

  122. Kylstra JW, Witzig TE, Huang M, Emmanouilides CE, Hagenbeek A, Tidmarsh GF. Discriminatory power of the 111-indium scan (111-In) in the prediction of altered biodistribution of radio-immunoconjugate in the 90-yttrium ibritumomab tiuxetan therapeutic regimen: meta-analysis of five clinical trials and 9 years of post-approval safety data. J Clin Oncol. 2011;29(15 suppl):8048.

    Google Scholar 

  123. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med. 1993;329:459–65.

    CAS  PubMed  Google Scholar 

  124. Vose JM, Wahl RL, Saleh M, Rohatiner AZ, Knox SJ, Radford JA, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18:1316–23.

    CAS  PubMed  Google Scholar 

  125. Moreau P, San Miguel J, Ludwig H, Schouten H, Mohty M, Dimopoulos M, et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv52–61.

    CAS  PubMed  Google Scholar 

  126. Kyle RA, Rajkumar V. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3–9.

    CAS  PubMed  Google Scholar 

  127. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48.

    PubMed  Google Scholar 

  128. Waxman AJ, Mick R, Garfall AL, Cohen A, Vogl DT, Stadtmauer EA, et al. Classifying ultra-high risk smoldering myeloma. Leukemia. 2014;29:751–3.

    PubMed  Google Scholar 

  129. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374:324–39.

    PubMed  Google Scholar 

  130. Lindsley H, Teller D, Noonan B, Peterson M, Mannik M. Hyperviscosity syndrome in multiple myeloma. A reversible, concentration-dependent aggregation of the myeloma protein. Am J Med. 1973;54:682–8.

    CAS  PubMed  Google Scholar 

  131. Latov N, Sherman WH, Nemni R, Galassi G, Shyong JS, Penn AS, et al. Plasma-cell dyscrasia and peripheral neuropathy with a monoclonal antibody to peripheral-nerve myelin. N Engl J Med. 1980;303:618–21.

    CAS  PubMed  Google Scholar 

  132. Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Miguel J, Chanan-Khan A, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117:4701–5.

    CAS  PubMed  Google Scholar 

  133. Rajkumar SV. Updated diagnostic criteria and staging system for multiple. Am Soc Clin Oncol Educ Book. 2016;35:418–23.

    Google Scholar 

  134. Lütje S, Rooy JWJ, Croockewit S, Koedam E, Oyen WJG, Raymakers RA. Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol. 2009;88:1161–8.

    PubMed  PubMed Central  Google Scholar 

  135. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–54.

    CAS  PubMed  Google Scholar 

  136. Durie BGM. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42:1539–43.

    PubMed  Google Scholar 

  137. Terpos E, Kleber M, Engelhardt M, Zweegman S, Gay F, Kastritis E, et al. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100:1254–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Dimopoulos M, Terpos E, Comenzo RL, Tosi P, Beksac M, Sezer O, et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia. 2009;23:1545–56.

    CAS  PubMed  Google Scholar 

  139. Terpos E, Moulopoulos LA, Dimopoulos MA. Advances in imaging and the management of myeloma bone disease. J Clin Oncol. 2011;29:1907–15.

    PubMed  Google Scholar 

  140. Regelink JC, Minnema MC, Terpos E, Kamphuis MH, Raijmakers PG, Pieters-van den Bos IC, et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: a systematic review. Br J Haematol. 2013;162:50–61.

    CAS  PubMed  Google Scholar 

  141. Agren B, Bjorkstrand B, Rudberg U, Aspelin PBL, Ågren B, Björkstrand B, et al. Radiography and bone scintigraphy in bone marrow transplant multiple myeloma patients. Acta Radiol. 1997;38:144–50.

    CAS  PubMed  Google Scholar 

  142. Chassang M, Grimaud A, Cucchi JM, Novellas S, Amoretti N, Chevallier P, et al. Can low-dose computed tomographic scan of the spine replace conventional radiography? An evaluation based on imaging myelomas, bone metastases, and fractures from osteoporosis. Clin Imaging. 2007;31:225–7.

    PubMed  Google Scholar 

  143. Pianko MJ, Terpos E, Roodman GD, Divgi CR, Zweegman S, Hillengass J, et al. Whole-body low-dose computed tomography and advanced imaging techniques for multiple myeloma bone disease. Clin Cancer Res. 2014;20:5888–97.

    CAS  PubMed  Google Scholar 

  144. Terpos E, Dimopoulos MA, Moulopoulos LA. The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book. 2016;35:e407–17.

    PubMed  Google Scholar 

  145. Winterbottom AP, Shaw AS. Imaging patients with myeloma. Clin Radiol. 2009;64:1–11.

    CAS  PubMed  Google Scholar 

  146. Princewill K, Kyere S, Awan O, Mulligan M. Multiple myeloma lesion detection with whole body CT versus radiographic skeletal survey. Cancer Investig. 2013;31:206–11.147.

    Google Scholar 

  147. Wolf MB, Murray F, Kilk K, Hillengass J, Delorme S, Heiss C, et al. Sensitivity of whole-body CT and MRI versus projection radiography in the detection of osteolyses in patients with monoclonal plasma cell disease. Eur J Radiol. 2014;83:1222–30.

    PubMed  Google Scholar 

  148. Cretti F, Perugini G. Patient dose evaluation for the whole-body low-dose multidetector CT (WBLDMDCT) skeleton study in multiple myeloma (MM). Radiol Med. 2016;121:93–105.

    PubMed  Google Scholar 

  149. Dimopoulos MA, Hillengass J, Usmani S, Zamagni E, Lentzsch S, Davies FE, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol. 2015;33:657–64.

    PubMed  Google Scholar 

  150. D’Sa S, Abildgaard N, Tighe J, Shaw P, Hall-Craggs M. Guidelines for the use of imaging in the management of myeloma. Br J Haematol. 2007;137:49–63.

    PubMed  Google Scholar 

  151. Merz M, Moehler TM, Ritsch J, Bäuerle T, Zechmann CM, Wagner B, et al. Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study. Eur Radiol. 2016;26:1404–11.

    PubMed  Google Scholar 

  152. Terpos E, Koutoulidis V, Fontara S, Zagouri F, Christoulas D, Koureas A, et al. Diffusion-weighted imaging improves accuracy in the diagnosis of MRI patterns of marrow involvement in newly diagnosed myeloma: results of a prospective study in 99 patients. Blood. 2015;126:4178.

    Google Scholar 

  153. Giles SL, Desouza NM, Collins DJ, Morgan VA, West S, Davies FE, et al. Assessing myeloma bone disease with whole-body diffusion-weighted imaging: comparison with x-ray skeletal survey by region and relationship with laboratory estimates of disease burden. Clin Radiol. 2015;70:614–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sachpekidis C, Mosebach J, Freitag MT, Wilhelm T, Mai EK, Haberkorn U, et al. Application of 18F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: comparison of functional imaging modalities. Am J Nucl Med Mol Imaging. 2015;5:479–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Pawlyn C, Fowkes L, Otero S, Jones J, Boyd K, Davies F, et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia. 2016;30:1446–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hubner KF, Andrews GA, Hayes RL, Poggenburg JK Jr, Solomon A. The use of rare-earth radionuclides and other bone-seekers in the evaluation of bone lesions in patients with multiple myeloma or solitary plasmacytoma. Radiology. 1977;125:171–6.

    CAS  PubMed  Google Scholar 

  157. Kanoh T, Ohno T, Uchino H, Yamamoto I, Torizuka K. Avid uptake of gallium-67 in multiple myeloma. An additional indicator of the aggressive phase. Clin Nucl Med. 1987;12:482–4.

    CAS  PubMed  Google Scholar 

  158. Roach PJ, Arthur CK. Comparison of thallium-201 and gallium-67 scintigraphy in soft tissue and bone marrow multiple myeloma: a case report. Australas Radiol. 1997;41:67–9.

    CAS  PubMed  Google Scholar 

  159. Lin WY, Wang SJ. Ga-67 scan findings in bone marrow involvement with plasmablastic myeloma and corresponding Tc-99m MIBI images. Clin Nucl Med. 2001;26(11):963.

    CAS  PubMed  Google Scholar 

  160. Bekerman C, Hoffer PB, Bitran JD. The role of gallium-67 in the clinical evaluation of cancer. Semin Nucl Med. 1984;14:296–323.

    CAS  PubMed  Google Scholar 

  161. Ohnishi T, Noguchi S, Murakami N, Tajiri J, Morita M, Tamaru M, et al. Pentavalent technetium-99m-DMSA uptake in a patient having multiple myeloma without amyloidosis. J Nucl Med. 1991;32:1785–7.

    CAS  PubMed  Google Scholar 

  162. Ishibashi M, Nonoshita M, Uchida M, Kojima K, Tomita N, Matsumoto S, et al. Bone marrow uptake of thallium-201 before and after therapy in multiple myeloma. J Nucl Med. 1998;39:473–5.

    CAS  PubMed  Google Scholar 

  163. Watanabe N, Shimizu M, Kageyama M, Tanimura K, Kinuya S, Shuke N, et al. Multiple myeloma evaluated with 201Tl scintigraphy compared with bone. J Nucl Med. 1999;40:1138–42.

    CAS  PubMed  Google Scholar 

  164. Pace L, Catalano L, Pinto A, De Renzo A, Di Gennaro F, Califano C, et al. Different patterns of technetium-99m sestamibi uptake in multiple myeloma. Eur J Nucl Med. 1998;25:714–20.

    CAS  PubMed  Google Scholar 

  165. Balleari E, Villa G, Garrè S, Ghirlanda P, Agnese G, Carletto M, et al. Technetium-99m-Sestamibi scintigraphy in multiple myeloma and related gammopathies: a new tool for the identification and follow-up of myeloma bone disease. Haematologica. 2001;86:78–84.

    CAS  PubMed  Google Scholar 

  166. Mirzaei S, Filipits M, Keck A, Bergmayer W, Knoll P, Koehn H, et al. Comparison of Technetium-99m-MIBI imaging with MRI for detection of spine involvement in patients with multiple myeloma. BMC Nucl Med. 2003;3:2. https://doi.org/10.1186/1471-2385-3-2.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Fonti R, Salvatore B, Quarantelli M, Sirignano C, Segreto S, Petruzziello F, et al. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med. 2008;49:195–200.

    PubMed  Google Scholar 

  168. Agool A, Slart RHJA, Dierckx RAJO, Kluin PM, Visser L, Jager PL, et al. Somatostatin receptor scintigraphy might be useful for detecting skeleton abnormalities in patients with multiple myeloma and plasmacytoma. Eur J Nucl Med Mol Imaging. 2010;37:124–30.

    CAS  PubMed  Google Scholar 

  169. Hazenberg BPC, van Rijswijk MH, Piers DA, Lub-de Hooge MN, Vellenga E, Haagsma EB, et al. Diagnostic performance of 123I-labeled serum amyloid P component scintigraphy in patients with amyloidosis. Am J Med. 2006;119:355.e15–24.

    Google Scholar 

  170. Bredella M, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol. 2005;184:1199–204.

    PubMed  Google Scholar 

  171. Durie BG, Waxman AD, D’Agnolo A, Williams C. Whole-body 18F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43:1457–63.

    PubMed  Google Scholar 

  172. Breyer RJ, Mulligan ME, Smith SE, Line BR, Badros AZ. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skelet Radiol. 2006;35:632–40.

    Google Scholar 

  173. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2008;26:2155–61.

    PubMed  Google Scholar 

  174. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, Coleman RE. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49(12):1928–35.

    PubMed  Google Scholar 

  175. Chae M, Lee T, Park G, Yu J, Pai M, Kang H, et al. Comparing 18F-FDG-PET/CT with other imaging modalities for detecting involving bone of multiple myeloma. J Nucl Med. 2007;48:351P.

    Google Scholar 

  176. Schirrmeister H, Buck AK, Bergmann L, Reske SN, Bommer M. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm. 2003;18:841–5.

    PubMed  Google Scholar 

  177. Nanni C, Rubello D, Zamagni E, Castellucci P, Ambrosini V, Montini G, et al. 18F-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo. 2008;22:513–7.

    PubMed  Google Scholar 

  178. Salaun PY, Gastinne T, Frampas E, Bodet-Milin C, Moreau P, Bodéré-Kraeber F. FDG-positron-emission tomography for staging and therapeutic assessment in patients with plasmacytoma. Haematologica. 2008;93:1269–71.

    PubMed  Google Scholar 

  179. Nanni C, Zamagni E, Farsad M, Castellucci P, Tosi P, Cangini D, et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging. 2006;33:525–31.

    PubMed  Google Scholar 

  180. Hur J, Yoon C-S, Ryu YH, Yun MJ, Suh J-S. Comparative study of fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spinal bone marrow infiltration in untreated patients with multiple myeloma. Acta Radiol. 2008;49:427–35.

    CAS  PubMed  Google Scholar 

  181. Bartel TB, Haessler J, Brown TLY, Shaughnessy JD, Van Rhee F, Anaissie E, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114:2068–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Gorospe L, Raman S, Echeveste J, Avril N, Herrero Y, Herna Ndez S. Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Commun. 2005;26:671–87.

    PubMed  Google Scholar 

  183. Mesguich C, Fardanesh R, Tanenbaum L, Chari A, Jagannath S, Kostakoglu L. State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings. Eur J Radiol. 2014;83:2203–23.

    PubMed  Google Scholar 

  184. Nanni C, Zamagni E, Versari A, Chauvie S, Bianchi A, Rensi M, et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging. 2016;43:414–21.

    CAS  PubMed  Google Scholar 

  185. Nanni C, Zamagni E, Cavo M, Rubello D, Tacchetti P, Pettinato C, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5:68. https://doi.org/10.1186/1477-7819-5-68.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cassou-Mounat T, Balogova S, Nataf V, Calzada M, Huchet V, Kerrou K, et al. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: a pilot study. Eur J Nucl Med Mol Imaging. 2016;43(11):1995–2004.

    CAS  PubMed  Google Scholar 

  187. Dankerl A, Liebisch P, Glatting G, Friesen C, Blumstein NM, Kocot D, et al. Multiple myeloma: molecular imaging with 11C-methionine PET/CT—initial experience. Radiology. 2007;242:498–508.

    PubMed  Google Scholar 

  188. Lapa C, Knop S, Schreder M, Rudelius M, Knott M, Jörg G, et al. 11 C-Methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics. 2016;6:254–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Lee SM, Kim TS, Lee JW, Kwon HW, Kim YI, Kang SH, et al. Incidental finding of an 11C-acetate PET-positive multiple myeloma. Ann Nucl Med. 2010;24:41–4.

    PubMed  Google Scholar 

  190. Huang SY, Chen BB, Lu HY, Lin HH, Wei SY, Hsu SC, et al. Correlation among DCE-MRI measurements of bone marrow angiogenesis, microvessel density, and extramedullary disease in patients with multiple myeloma. Am J Hematol. 2012;87:837–9.

    PubMed  Google Scholar 

  191. Merz M, Ritsch J, Kunz C, Wagner B, Sauer S, Hose D, et al. Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin Cancer Res. 2015;21:106–12.

    CAS  PubMed  Google Scholar 

  192. Dutoit JC, Claus E, Offner F, Noens L, Delanghe J, Verstraete KL. Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted imaging for response evaluation of patients with multiple myeloma. Eur J Radiol. 2016;85:373–82.

    PubMed  Google Scholar 

  193. Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI. Multiple myeloma: MR patterns of response to treatment. Radiology. 1994;193:441–6.

    CAS  PubMed  Google Scholar 

  194. Hillengass J, Ayyaz S, Kilk K, Weber M-A, Hielscher T, Shah R, et al. Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica. 2012;97:1757–60.

    PubMed  PubMed Central  Google Scholar 

  195. Bannas P, Hentschel HB, Bley TA, Treszl A, Eulenburg C, Derlin T, et al. Diagnostic performance of whole-body MRI for the detection of persistent or relapsing disease in multiple myeloma after stem cell transplantation. Eur Radiol. 2012;22:2007–12.

    PubMed  Google Scholar 

  196. Spinnato P, Bazzocchi A, Brioli A, Nanni C, Zamagni E, Albisinni U, et al. Contrast enhanced MRI and 18F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol. 2012;81:4013–8.

    CAS  PubMed  Google Scholar 

  197. Fallahi D, Beiki D, Mousavi SA, Gholamrezanezhad A, Eftekhari M, Fard-Esfahani A, Alimoghaddam K, et al. 99mTc-MIBI whole body scintigraphy and P-glycoprotein for the prediction of multiple drug resistance in multiple myeloma patients. Hell J Nucl Med. 2009;12:255–9.

    PubMed  Google Scholar 

  198. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53:977–84.

    CAS  PubMed  Google Scholar 

  199. Patriarca F, Melli C, Damiani D, Michieli M, Michelutti A, Cavo M, et al. Plasma cell P170 expression and response to treatment in multiple myeloma. Haematologica. 1996;81:232–7.

    CAS  PubMed  Google Scholar 

  200. Mongkonsritragoon W, Kimlinger T, Ahmann G, Greipp P. Is multidrug resistance (P-glycoprotein) an intrinsic characteristic of plasma cells in patients with monoclonal gammopathy of undetermined significance plasmacytoma, multiple myeloma and amyloidosis? Leuk Lymphoma. 1998;29:577–84.

    CAS  PubMed  Google Scholar 

  201. Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, et al. Prospective evaluation of magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM Study. J Clin Oncol. 2017;35(25):2911–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Sachpekidis C, Mai EK, Goldschmidt H, Hillengass J, Hose D, Pan L, et al. 18F-FDG dynamic PET/CT in patients with multiple myeloma. Clin Nucl Med. 2015;40:e300–7.

    PubMed  Google Scholar 

  203. Tirumani SH, Sakellis C, Jacene H, Shinagare AB, Munshi NC, Ramaiya NH, et al. Role of FDG-PET/CT in extramedullary multiple myeloma: correlation of FDG-PET/CT findings with clinical outcome. Clin Nucl Med. 2016;41:e7–13.

    PubMed  Google Scholar 

  204. Zamagni E, Nanni C, Patriarca F, Englaro E, Castellucci P, Geatti O, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92:50–5.

    PubMed  Google Scholar 

  205. Zamagni E, Nanni C, Gay F, Pezzi A, Patriarca F, Bellò M, et al. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia. 2016;30:417–22.

    CAS  PubMed  Google Scholar 

  206. Siontis B, Kumar S, Dispenzieri A, Drake MT, Lacy MQ, Buadi F, et al. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy. Blood Cancer J. 2015;5:e364. https://doi.org/10.1038/bcj.2015.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lonial S, Kaufman JL. Non-secretory myeloma: a clinician’s guide. Oncology (Williston Park). 2013;27:924–30.

    Google Scholar 

  208. Sachpekidis C, Hillengass J, Goldschmidt H, Mosebach J, Pan L, Pet F. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015;5:469–78.

    PubMed  PubMed Central  Google Scholar 

  209. Sollini M, Galimberti S, Boni R, Erba PA. Radionuclide therapy of leukemias and multiple myeloma. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology – from pathophysiology to clinical applications. New York: Springer; 2017. p. 1157–96.

    Google Scholar 

  210. Orchard K, Cooper M, Lewington V, Tristan M, Zivanovic M, Thom J, et al. Targeted radiotherapy in haematopoietic stem cell transplantation: results of a phase I trial using an yttrium-90-labelled anti-CD66 murine monoclonal antibody demonstrating consistent BM targeting. Bone Marrow Transpl. 2006;37:S45.

    Google Scholar 

  211. Buchmann I, Meyer RG, Mier W, Haberkorn U. Myeloablative radioimmunotherapy in conditioning prior to haematological stem cell transplantation: closing the gap between benefit and toxicity? Eur J Nucl Med Mol Imaging. 2009;36:484–98.

    PubMed  Google Scholar 

  212. Abruzzese E, Iuliano F, Trawinska MM, Di Maio M. 153Sm: its use in multiple myeloma and report of a clinical experience. Expert Opin Investig Drugs. 2008;17:1379–87.

    CAS  PubMed  Google Scholar 

  213. Dispenzieri A, Wiseman GA, Lacy MQ, Hayman SR, Kumar SK, Buadi F, et al. A phase II study of 153Sm-EDTMP and high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Am J Hematol. 2010;85:409–13.

    CAS  PubMed  Google Scholar 

  214. Berenson JR, Yellin O, Patel R, Duvivier H, Nassir Y, Mapes R, et al. A phase I study of samarium lexidronam/bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2009;15:1069–75.

    CAS  PubMed  Google Scholar 

  215. Rousseau C, Ferrer L, Supiot S, Bardiès M, Davodeau F, Faivre-Chauvet A, et al. Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients. Tumour Biol. 2012;33:679–88.

    CAS  PubMed  Google Scholar 

  216. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113:2265–74.

    CAS  PubMed  Google Scholar 

  217. Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–7.

    CAS  PubMed  Google Scholar 

  218. Mesguich C, Zanotti-Fregonara P, Hindié E. New perspectives offered by nuclear medicine for the imaging and therapy of multiple myeloma. Theranostics. 2016;6(2):287–90.

    CAS  PubMed  Google Scholar 

  219. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57(2):248–51.

    CAS  PubMed  Google Scholar 

  220. Bluemel C, Hahner S, Heinze B, Fassnacht M, Kroiss M, Bley TA, et al. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin Nucl Med. 2017;42(1):e29–34.

    PubMed  Google Scholar 

  221. Buck AK, Stolzenburg A, Hänscheid H, Schirbel A, Lückerath K, Schottelius M, et al. Chemokine receptor - directed imaging and therapy. Methods. 2017;130:63–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Anna Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erba, P.A., Sollini, M., Boni, R., Galimberti, S. (2019). Hybrid Imaging and Radionuclide Therapy in Hemato-oncology. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics