Skip to main content

Part of the book series: Cognitive Computation Trends ((COCT,volume 1))

Abstract

In this chapter, the concept of “Externalised Mind 2”, in other words the concept of virtual self-motion, virtual reality, mixed vs augmented reality is explored. The role as well as the physical and structural parameters of optokinetic information including vestibular sensitivity is also analysed when in virtual immersion. The question of the real and virtual brain at both peripheral and central levels is investigated. It is also explained how we navigate in the naturalistic virtual world, and what the consequences of visuo-vestibular, somesthetic and cognitive conflict vs interaction in virtual navigation are. The concept of “presence” in the virtual world in terms of mirror, or reflection of the real world is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi E, Burdet E, Bouri M, Himidan S, Bleuler H (2016) In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Nat Sci Rep 6:21758. https://doi.org/10.1038/srep21758

    Article  CAS  Google Scholar 

  • Andersen GJ, Braunstein ML (1985) Induced self-motion in central vision. J Exp Psychol Hum Percept Perform 11:122–132

    CAS  PubMed  Google Scholar 

  • Andrian ED (1943) Discharges from vestibular receptors in the cat. J Physiol 101:389–407

    Google Scholar 

  • Apthorp D, Griffiths S, Alais D, Cass J (2014) Adaptation-induced blindness is orientation-tuned and monocular. I-perception 2017, 8(2):2041669517698149. https://doi.org/10.1177/2041669517698149

    Article  Google Scholar 

  • Armstrong CM, Reger GM, Edwards J, Rizzo AA, Courtney CG, Parsons TD (2013) Validity of the Virtual Reality Stroop Task (VRST) in active duty military. J Clin Exp Neuropsychol 35(2):113–123

    PubMed  Google Scholar 

  • Astur RS, Ortiz ML, Sutherland RJ (1998) A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav Brain Res 93:185–190

    CAS  PubMed  Google Scholar 

  • Banakou D, Groten R, Slater M (2013) Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci 110(31):12846–12851

    CAS  PubMed  Google Scholar 

  • Baumberger B (1993) La localisation spatiale dans un environnement visuel mobile Thèse de Doctorat N° 194, Faculté de Psychologie et des Sciences de l’Education, Université de Genève Genève, Suisse

    Google Scholar 

  • Baumberger B, Isableu B, Flückiger M (2004) The visual control of stability in children and adults: postural readjustments in a ground optical flow. Exp Brain Res 159:33–46

    PubMed  Google Scholar 

  • Baumgartner T, Willi M, Jäncke L (2007) Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: a transcranial magnetic stimulation study. NeuroReport 18:261–265

    PubMed  Google Scholar 

  • Baumgartner T, Speck D, Wettstein D, Masnari O, Beeli G, Jäncke L (2008) Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Front Hum Neurosci 2:8. https://doi.org/10.3389/neuro.09.008.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Becchio C, Sartori L, Castiello U (2010) Toward you: the social side of actions. Curr Dir Psychol Sci 19:183–188

    Google Scholar 

  • Becker C, Mollon JD (2002) Heritability of inter individual variation in illusory-motion perception: a study that exploits the internet. Perception, 36 (ECVP abstract Supplement)

    Google Scholar 

  • Becker-Bense S, Buchholz HG, Best C, Schreckenberger M, Bartenstein P, Dieterich M (2012) Vestibular compensation in acute unilateral medullary infarction: FDG-PET study. Neurology 80(12):1103–1109

    Google Scholar 

  • Benson AJ, Spencer MB, Stott JRR (1986a) Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 57:1088–1096

    CAS  PubMed  Google Scholar 

  • Benson AJ, Kass JR, Vogel H (1986b) Threshold of perception of whole body linear acceleration : modification by spaceflight. From European vestibular experiments in the spacelab I mission. Exp Brain Res 64:264–271

    CAS  PubMed  Google Scholar 

  • Bergström B (1973) Morphology of the vestibular nerve: II The number of myelinated vestibular nerve fibers in man at various ages. Acta Oto-Laryngologica (Stockh) 76:173–179

    Google Scholar 

  • Berthoz A (1997) Le sens du mouvement. Odile Jacob, Paris

    Google Scholar 

  • Berthoz A, Droulez J (1982) Linear self-motion perception. In: Wertheim AH, Wagenaar WA, Leibowitz HW (eds) Tutorials in motion perception. Plenum Publishing Corporation, London, pp 157–199

    Google Scholar 

  • Berthoz A, Pavard B, Young LR (1975) Perception of linear horizontal self-motion induced by peripheral visions. Experimental Brain Research 23:471–489

    CAS  PubMed  Google Scholar 

  • Berthoz A, Israël I, George-François P, Grasso R, Tsuzuku T (1995) Spatial memory of body linear displacement: what is being stored? Science 269:95–98

    CAS  PubMed  Google Scholar 

  • Biocca F (1997) The Cyborg’s Dilemma: progressive embodiment in virtual environments. J Comp Med Commun 3(2):JCMC324

    Google Scholar 

  • Bonnet C (1987) La perception visuelle du mouvement. Le Courrier du CNRS 69–70:19–22

    Google Scholar 

  • Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Ermiono F, Passingham RE, Frith CD, Frackowiak RSJ (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99:164–169

    CAS  PubMed  Google Scholar 

  • Brandt T, Dichgans J, Koening E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491

    CAS  PubMed  Google Scholar 

  • Brandt T, Dichgans J, Büchele W (1974) Motion habituation: inverted self-motion perception and optokinetic after-nystagmus. Exp Brain Res 21:337–352

    CAS  PubMed  Google Scholar 

  • Brandt T, Dietrich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–415

    CAS  PubMed  Google Scholar 

  • Brandt T, Strupp M, Dieterich M (2014) Towards a concept of disorders of “higher vestibular function”. Front Integr Neurosci 8:47

    PubMed  PubMed Central  Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758

    PubMed  Google Scholar 

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586

    PubMed  Google Scholar 

  • Büttner U, Lang W (1979) The vestibulo-cortical pathway: neurophysiological and anatomical studies in the monkey. Prog Brain Res 50:581–588

    PubMed  Google Scholar 

  • Calvert GA, Spence C, Stein BE (2004) The handbook of multisensory processes. MIT Press, Cambridge

    Google Scholar 

  • Cazin L, Precht W, Lannou J (1980) Optokinetic responses of vestibular nucleus neurons in the rat. Pflüg Arch 384:31–38

    CAS  Google Scholar 

  • Cheung BSK, Howard IP, Nedzelski JM, Landolt JP (1989) Circular vection about horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica (Stockh) 108:336–344

    CAS  Google Scholar 

  • Cheung BSK, Howard IP, Money KE (1990) Visually-induced tilt during parabolic flights. Exp Brain Res 81:391–397

    CAS  PubMed  Google Scholar 

  • Cho BH, Ku J, Pyojan D, Kim S, Lee YH, Kim IY, Lee JH, Kim SI (2002) The effect of virtual reality cognitive training for attention enhancement. Cyber Psychol Behav 5:129–137

    Google Scholar 

  • Christiansen C, Abreu BC, Ottenbacher KJ, Cupepper R (1998) Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury. Arch Phys Med Rehabil 79(8):888–892

    CAS  PubMed  Google Scholar 

  • Clément G, Jacquin T, Berthoz A (1985) Habituation of postural readjustments induced by motion of visual scenes. In: Igarashi B (ed) Vestibular and visual control on posture and locomotion equilibrium. Karger, Basel, pp 99–104

    Google Scholar 

  • Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. In: Braitenberg et al (eds) Studies in brain function. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Craske B (1977) Perception of impossible limb position induced by tendon vibration. Science 196:71–73

    CAS  PubMed  Google Scholar 

  • Cromby JJ, Standen PJ, Newman J, Tasker H (1996) Successful transfer to the real world of skills practised in a virtual environment by students with severe learning difficulties. In: Sharkey P (ed) Proceedings of the First European Conference on Disability, Virtual Reality and Associated Technology. Maidenhead, UK, pp 103–107

    Google Scholar 

  • Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. Commun ACM 35:64–72

    Google Scholar 

  • Davies RC, Johansson G, Boschian K, Lindén A, Minör U, Sonesson B (1998) Apractical example using virtual reality in the assessment of brain injury. In: Sharkey P, Rose D, Lindström JI (eds) Proceedings of the 2nd European conference on disability, virtual reality & associated technologies. Sweden, Skövde, pp 61–68

    Google Scholar 

  • De Saedeleer C, Vidal M, Lipshits M, Bengoetxea A, Cebolla AM, Berthoz A, Guy Cheron G, Mcintyre J (2013a) Weightlessness alters up/down asymmetries in the perception of self-motion. Exp Brain Res 226(1):95–106

    PubMed  Google Scholar 

  • De Saedeleer C, Vidal M, Lipshits M, Bengoetxea A, Cebolla AM, Berthoz A et al (2013b) Weightlessness alters up/down asymmetries in the perception of self-motion. Exp Brain Res 226:95–106

    PubMed  Google Scholar 

  • Delorme A, Martin C (1986) Roles of retinal periphery and depth periphery in linear vection and visual control of standing in humans. Can J Psychol/Revue canadienne de psychologie 40(2):176–187

    CAS  Google Scholar 

  • Denton GG (1976) The influence of adaptation on subjective velocity for an observer in simulated rectilinear motion. Ergonomics 4:409–430

    Google Scholar 

  • Deutschländer A, Bense S, Stephan T, Schwaiger M, Dieterich M, Brandt T (2004) Rollvection versus linearvection: comparison of brain activations in PET. Hum Brain Mapp 21:143–153

    PubMed  Google Scholar 

  • Dichgans J, Brandt T (1974) The psychophysics of visually-induced perception of self-motion and tilt. In: Schmidt FO, Worden FG (eds) The neurosciences. MIT Press, Cambridge, pp 123–129

    Google Scholar 

  • Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self motion perception and postural control. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology, vol VIII. Springer, New York, pp 755–804

    Google Scholar 

  • Dichgans J, Held R, Young LR, Brandt T (1972) Moving visual scenes influence the apparent direction of gravity. Science 178:1217–1219

    CAS  PubMed  Google Scholar 

  • Diemer JE, Alpers GW, Peperkorn HM, Shiban Y, Mühlberger A (2015) The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front Psychol 6:26. https://doi.org/10.3389/fpsyg.2015.00026

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodge R (1923) Thresholds of rotation. J Exp Psychol 6:107–137

    Google Scholar 

  • Dowsett J, McAssey M, Dieterich M, Paul C, Taylor PC (2017) Cognition and higher vestibular disorders: developing tools for assessing vection. J Neurol 264(Suppl 1):45–47

    PubMed  Google Scholar 

  • Engström H, Bergström B, Rosenhall U (1974) vestibular sensory epithelia. Arch Otolaryngol 100:411–418

    PubMed  Google Scholar 

  • Eskinazi M (2016) under the dir Giannopulu. The intuition and decision making process in unselected subjects in virtual reality via a HMD. Research Master-ICP, Paris

    Google Scholar 

  • Eskinazi M, Giannopulu I (2018) From real to naturalistic virtual environment: continuity in intuition? (Submitted)

    Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984

    CAS  PubMed  Google Scholar 

  • Fischer MH, Kornmüller AE (1930) Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J für Psychologie und Neurologie (Leipzig) 41:273–308

    Google Scholar 

  • Fluur E (1970) The interaction between the utricule and the saccule. Acta Otolaryngol 69:17–24

    CAS  PubMed  Google Scholar 

  • Giannopulu I (1996) Determinants cognitifs et vestibulaires de la chronométrie de vection chez l’Homme. Thèse de Doctorat, UPMC-Paris VI, Paris

    Google Scholar 

  • Giannopulu I (2011) Contribution à la compréhension des représentations multimodales chez l’homme sein et chez des patients avec atteinte neuropsychologique: une approche life span. Habilitation à Diriger des Recherches, UPMC-Paris VI, 2011

    Google Scholar 

  • Giannopulu I (2013, April) Visual, vestibular and cognitive contributions to self-motion perception in children and in adults. EPFL, Lausanne, Switzerland

    Google Scholar 

  • Giannopulu I (2015) Virtual reality and robotics contribution to the understanding and analysis of multimodal interactions in children and adults. Workshop, EPFL, Leysin, 13–14 March, Switzerland

    Google Scholar 

  • Giannopulu I (2016) Contribution to the comprehension of multimodal representations. (Contribution à la comprehension des représentations multimodales). European Editions: Sarrebruck

    Google Scholar 

  • Giannopulu, I. (2017a) Visuo-Vestibular and Somesthetic Contributions to Spatial Navigation in Children and Adults, In Mobility of Visually Impaired People. In E Pissaloux and R Velazquez (Eds) 201–233.

    Google Scholar 

  • Giannopulu, I. (2017b) Visuo-Vestibular and Cardiovasclar Contributions to Vertical Ego-motion Repersentation Science of the Self:The Agency and Body Repersentation Research Forum, 20–22 November, Sydney, Australia.

    Google Scholar 

  • Giannopulu I, Lepecq JC (1998) Linear vection chronometry along spinal and sagittal body-motion. Perception 27:363–449

    CAS  PubMed  Google Scholar 

  • Giannopulu I, Bertin RJV, Brémond R, Kapoula Z, Espié S (2007) Visual strategies in virtual and pre-recording environments. International Conference on RSS, pp 37–38

    Google Scholar 

  • Giannopulu I, Bertin RJV, Brémond R, Kapoula Z, Espié S (2008) Visual strategies in virtual and pre-recording environments. Adv Transport Stud Int J Sect B 14:49–56

    Google Scholar 

  • Giannopulu I, Leboucher P, Rautureau G, Israël I, Jouvent R (2015a) Spatial vertical navigation in healthy adults. In: New trends in medical and service robots. Springer, Cham, pp 101–112

    Google Scholar 

  • Giannopulu I, Leboucher P, Rautureau G, Israël I, Jouvent R (2015b) Vertical linear self-motion perception in health adults via a HMD. MESROB 2015, 8–10 July, Nantes, France

    Google Scholar 

  • Gibson JJ (1950) The perception of visual world. Houghton Mifflin.

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Goldberg JM, Wilson VJ, Cullen CE, Angelaki DE, Boussard DM, Buettner-Ennever JA et al (2012a) The vestibular system: a sixth sense, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Büttner-Ennever JA (2012b) The vestibular system: a sixth sense. Oxford University Press Inc, Oxford

    Google Scholar 

  • Gonzalez-Franco M, Lanier J (2017) Model of illusions and virtual reality. Front Psychol 8:1125. https://doi.org/10.3389/fpsyg.2017.01125

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Franco M, Perez-Marcos D, Spanlang B, Slater M (2010) The contribution of real-time mirror reflections of motor actions on virtual body ownership in an immersive virtual environment. IEEE Virtual Reality Conference, pp 111–114

    Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) Proprioceptive illusions induced by muscle vibration: contribution to perception by muscle spindles. Science 175:1382–1384

    CAS  PubMed  Google Scholar 

  • Graybiel A, Brown RH (1951) The delay in visual reorientation following exposure to a change in resultant force on human centrifuge. J Gen Physiol 45:143–150

    Google Scholar 

  • Greven AJ, Oosterveld WJ, Rademakers WJAC (1974) Linear acceleration perception. Arch Otolaryngol 100:453–459

    CAS  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schereiter U (1990a) Localization and responses of neurons in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557

    PubMed  PubMed Central  Google Scholar 

  • Grüsser OJ, Pause M, Schereiter U (1990b) Vestibular neurons in the parieto-insular cortex of monkey (Macaca fascicularis): visual and neck receptor responses. J Physiol 430:559–583

    PubMed  PubMed Central  Google Scholar 

  • Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10:1038–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guedry FE (1974) Psychophysics of vestibular sensation. In: Kornhuber HH (ed) Handbook of sensory physiology. The vestibular system, vol VI (2). Springer, Berlin, pp 1–154

    Google Scholar 

  • Guerraz M, Bronstein AM (2008) Mechanisms underlying visually induced body sway. Neurosci Lett 443(1):12–16

    CAS  PubMed  Google Scholar 

  • Heckmann T, Howard IP (1991) Induced motion: isolation an dissociation of egocentric and vection-entrained components. Perception 20:285–305

    CAS  PubMed  Google Scholar 

  • Held R, Dichgans J, Bauer J (1975) Characteristics of moving visual scenes influencing spatial orientation. Vis Res 15:357–365

    CAS  PubMed  Google Scholar 

  • Helmholtz HL von (1896/1909/1962) Handbook of physiological optics. New York: Dover. English translation by JPC Southall for the Optical Society of America (1924) from the 3rd German edition of Handbuch der physiologischen Optik. Voss, Hamburg 1909

    Google Scholar 

  • Howard IP (1982) Human visual orientation. Wiley, New York

    Google Scholar 

  • Howard IP (1986a) The vestibular system. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, vol I. Wiley, New York, pp 11-3–11-26

    Google Scholar 

  • Howard IP (1986b) The perception of posture, self motion and the visual vertical. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, vol I. Wiley, New York, pp 18-2–18-52

    Google Scholar 

  • Howard IP, Heckmann T (1989) Circular vection as a function of the relative sizes, distances, and position of the two competing visual displays? Perception 18:657–665

    CAS  PubMed  Google Scholar 

  • Howard IP, Howard A (1994) Vection: the contributions of absolute and relative visual motion. Perception 23:745–751

    CAS  PubMed  Google Scholar 

  • Howard IP, Cheung BSK, Landolt J (1988) Influence of vection axis and body posture on visually-induced self rotation. Advisory Group Aerospace Res Dev 433:15-1–15-8

    Google Scholar 

  • Hu S, Grant WF, Stern RM, Koch KL (1991) Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat Space Environ Med 62:308314

    CAS  PubMed  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F (2005) Representation of visual gravitational motion in the human vestibular cortex. Science 308(5720):416–419

    CAS  PubMed  Google Scholar 

  • Indovina I, Maffei V, Lacquaniti F (2013a) Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths. Exp Brain Res 229:579–586

    PubMed  Google Scholar 

  • Indovina I, Maffei V, Pauwels K, Macaluso E, Orban GA, Lacquaniti F (2013b) Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain. NeuroImage 71:114–124

    PubMed  Google Scholar 

  • Ingle D (1967) Two visual mechanism underlying the behavior of fish. Psychol Forsch 31:44–51

    CAS  PubMed  Google Scholar 

  • Inman DP, Loge K, Leavens J (1997) VR education and rehabilitation. Commun ACM 40:53–58

    Google Scholar 

  • Israël I, Giannopulu I (2012) Subjective posture in tridimensional space. J Vestib Res 4:173–180

    Google Scholar 

  • Jäncke L, Cheetham M, Baumgartner T (2009) Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci 3(1):52–59

    PubMed  PubMed Central  Google Scholar 

  • Johansson G (1977) Studies on visual perception of locomotion. Perception 6:365–376

    CAS  PubMed  Google Scholar 

  • Johnsson LG, Hawkins JE (1972) Sensory and neural degeneration with aging, as seen in microdissections of the human inner ear. Ann Otol Rhinol Laryngol 81:179–193

    CAS  PubMed  Google Scholar 

  • Kano C (1991) The perception of self-motion induced by peripheral visual information in sitting and supine postures. Ecol Psychol 3:241–252

    Google Scholar 

  • Keller EL, Precht W (1979) Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. J Neurophysiol 42(3):896–911

    CAS  PubMed  Google Scholar 

  • Keshavarz B, Hecht H, Lawson BD (2014a) Visually induced motion sickness: characteristics, causes, and countermeasures. In: Hale KS, Stanney KM (eds) Handbook of virtual environments: design, implementation, and applications. CRC Press, Boca Raton, pp 648–697

    Google Scholar 

  • Keshavarz B, Hettinger LJ, Kennedy RS, Campos JL (2014b) Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. PLoS One 9:e101016. https://doi.org/10.1371/journal.pone.0101016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavarz B, Hettinger LJ, Vena D, Campos JL (2014c) Combined effects of auditory and visual cues on the perception of vection. Exp Brain Res 232:827–836

    PubMed  Google Scholar 

  • Kilteni K, Maselli A, Kording KP, Slater M (2015) Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Front Hum Neurosci 9(141). https://doi.org/10.3389/fnhum.2015.00141

  • Kitazaki M, Sato T (2003) Attentional modulation of self-motion perception. Perception 32:475–484

    PubMed  Google Scholar 

  • Kleinschmidt A, Thilo KV, Buchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. NeuroImage 16:873–882

    PubMed  Google Scholar 

  • Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787

    PubMed  Google Scholar 

  • Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound field. Aviat Space Environ Med 48:129–131

    CAS  PubMed  Google Scholar 

  • Lackner JR (1985) Human sensori-motor adaptation to the terrestrial force environment. In: Ingle DI, Jeannerod M, Lee DL (eds) Brain mechanisms and spatial vision. Martinus Nijhoff Publishers, Dordrecht, pp 175–209

    Google Scholar 

  • Lacquaniti F, Bosco G, Indovina I, La Scaleia B, Maffei V, Moscatelli A, Zago M (2013) Visual gravitational motion and the vestibular system in humans. Front Integr Neurosci. 26(7):101. https://doi.org/10.3389/fnint.2013.00101

    Article  Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177(1):3–17

    CAS  PubMed  Google Scholar 

  • Larson P, Rizzo AA, Buckwalter JG, van Rooyen A, Kratz K, Neumann U, Kesselman C, Thiebaux M, van der Zaag C (1999) Gender issues in the use of virtual environments. CyberPsychol Behav 2:113–123

    CAS  PubMed  Google Scholar 

  • Larsson P, Västfjall D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. In: Proceedings of the seventh annual workshop of presence. Valencia, Spain, pp 252–258

    Google Scholar 

  • Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Percept Psychophys 15:529–532

    Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Leibowitz HW, Post RB (1982) The two modes of processing concept and some implications. In: Beck J (ed) Organisation and representations in perception. Lawrence Erlbaum Associates, Hillsdale, pp 343–363

    Google Scholar 

  • Leibowitz HW, Shupert CL, Post RB (1985) Two modes of visual processing: implications for spatial orientation. In: Emergent techniques for assessment of visual performance. National Academy Press, Washington, DC, pp 25–28

    Google Scholar 

  • Lepecq JC, Jouen F, Dubon D (1993) The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception 22:49–60

    CAS  PubMed  Google Scholar 

  • Lepecq JC, Giannopulu I, Baudonnière PM (1994) Vection and cognition in children. J Psychophysiol:280–281

    Google Scholar 

  • Lepecq JC, Giannopulu I, Baudonnière PM (1995) Cognitive effects on visually induced body-motion in children. Perception 24:435–449

    CAS  PubMed  Google Scholar 

  • Lepecq JC, Giannopulu I, Mertz S, Baudonnière PM (1999) Vestibular sensivity and linear vection chronometry along spinal axis in erect man. Perception 28:63–72

    CAS  PubMed  Google Scholar 

  • Lindeman HH (1973) Anatomy of the otolith organs. Adv Otorhinolaryngol 20:405–433

    CAS  PubMed  Google Scholar 

  • Lishman JR, Lee DN (1973) The autonomy of visual kinaesthesis. Perception 2:287–294

    CAS  PubMed  Google Scholar 

  • Loe PR, Tomko DL, Werner G (1973) The neural signal of angular head position in primary afferent vestibular nerve axons. J Physiol Lond 230:29–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard M, Ditton T (1997) At the heart of it all: the concept of presence. J Comput-Mediat Commun 3(2)

    Google Scholar 

  • Lopez C, Halje P, Blanke O (2008) Body ownership and embodiment: vestibular and multisensory mechanisms. Neurophysiol Clin 38:149–161

    CAS  PubMed  Google Scholar 

  • Lopez C, Blanke O, Mast FW (2012) The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 212:159–179

    CAS  PubMed  Google Scholar 

  • Lowenstein O, Sand A (1940) The mechanism of the semicircular canal. A study of the responses of single-fibre preparations to angular accelerations and to rotation at constant speed. Proc R Soc B 129:256–275

    Google Scholar 

  • Mach E (1875) Grundlinien der lehre von den Bewegungsempfindungen. Engelmann, Leipzig

    Google Scholar 

  • Maekawa K, Kimura M (1981) Electrophysiological study of the nucleus of the optic tract that transfers optic signals to the nucleus reticularis tegmenti pontis - the visual mossy fiber pathway to the cerebellar flocculus. Brain Research., 4 21(2):456–462

    Google Scholar 

  • Malcolm R, Melvill Jones G (1974a) Erroneous perception of vertical motion by humans seated in the upright position. Acta Oto-laryngologica (Stockh) 77:274–283

    CAS  Google Scholar 

  • Malcolm R, Melvill Jones G (1974b) Erroneous perception of vertical motion by humans seated in the upright position. Acta Oto-laryngologica (Stockh) 77:274–283

    CAS  Google Scholar 

  • Manfredi LR, Saal HP, Brown KJ, Zielinski MC, Dammann JF III, Polashock VS, Bensmaia SJ (2014) Natural scenes in tactile texture. J Neurophysiol 111(9):1792–1802

    PubMed  Google Scholar 

  • Maselli A (2015) Allocentric and egocentric manipulations of the sense of self-location in full-body illusions and their relation with the sense of body ownership. Cogn Process 16:309–312

    PubMed  Google Scholar 

  • McComas J, MacKay M, Pivak J (2002) Effectiveness of virtual reality for teaching pedestrian safety. CyberPsychol Behav 5:185–190

    PubMed  Google Scholar 

  • McGeorge P, Phillips LH, Crawford JR, Garden SE, Della Sala S, Milne AB, Hamilton S, Callender JS (2001) Using virtual environments in the assessment of executive dysfunction. In: Presence : teleoperators & virtual environments, vol 10. MIT Press, Cambridge, MA, pp 375–383

    Google Scholar 

  • Melvill Jones G, Young LR (1978) Subjective detection of vertical acceleration: a velocity depend response? Acta Otolaryngol 85:45–53

    Google Scholar 

  • Mendozzi L, Motta A, Barbieri E, Alpini D, Pugnetti L (1998) The application of virtual reality to document coping deficits after a stroke : report of a case. CyberPsychol Behav 1:79–91

    Google Scholar 

  • Meyer GF, Shao F, White MD, Hopkins C, Robotham AJ (2013) Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a “virtual reality check”. PLoS One 8:e67651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohrmann-Lendla H, Fleischer GA (1991) The effect of a moving background on aimed hand movements. Ergonomics 34(3):353–364

    CAS  PubMed  Google Scholar 

  • Mowafy L, Pollack J (1995) Train to travel. Ability 15:18–20

    Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 188(3):437–444

    Google Scholar 

  • Nakamura S, Shimojo S (1999) The critical role of the foreground stimuli in perceiving visually induced self-motion (vection). Perception 28:893–902

    CAS  PubMed  Google Scholar 

  • Neiger H, Gilhodes JC, Tardy-Gervet MF, Roll JP (1986) Rééducation sensori-motrice par assistance proprioceptive vibratoire. Kinésithérapie Scientifique 252:6–21

    Google Scholar 

  • Neisser U (1978) Memory : what are the important questions? In: Gruneberg MM, Morris PE, Sykes RN (eds) practical aspects of memory. Academic Press, London, pp 3–24

    Google Scholar 

  • Nudo R (2003) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med (41):7–10

    Google Scholar 

  • Ogawa M, Seno T (2014) Vection is modulated by the semantic meaning of stimuli and experimental instructions. Perception 63:605–615

    Google Scholar 

  • Ohmi M, Howard IP (1988) Effect of stationary objects on illusion forward self-motion induced by a looming display. Perception 17:5–12

    CAS  PubMed  Google Scholar 

  • Ohmi M, Howard IP, Landolt JP (1987) Circular vection as a function of foreground-background relationships. Perception 16:17–22

    CAS  PubMed  Google Scholar 

  • Owen DH (1990) Lexicon of terms for the perception and control of self-motion and orientation. In: Warren R, Wertheim AH (eds) Perception control and self-motion. Erlbaum, Hillsdale, pp 33–47

    Google Scholar 

  • Padrao G, Padrao G, Gonzalez-Franco M, Maria S-V, Slater VM, Rodriguez-Fornells M (2016) Violating body movement semantics: neural signatures of self-generated and external-generated errors. NeuroImage 124(Part A):147–156

    PubMed  Google Scholar 

  • Palmisano S, Allison RS, Schira MM, Barry RJ (2015) Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front Psychol 6:193. https://doi.org/10.3389/fpsyg.2015.00193

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons TD (2015) Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front Hum Neurosci 9:660

    PubMed  PubMed Central  Google Scholar 

  • Parsons TD, Rizzo AA (2008) Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J Behav Ther Exp Psychiatry 39:250–261

    PubMed  Google Scholar 

  • Patterson R, Winterbottom MD, Pierce BJ (2006) Perceptual issues in the use of head-mounted visual displays. Human Factors: J Hum Fact Ergon Soc 48:555–573. https://doi.org/10.1518/001872006778606877

    Article  Google Scholar 

  • Pavard B, Berthoz A (1976) Perception du mouvement et orientation spatiale. Le travail humain 39:12–30

    Google Scholar 

  • Pelphrey KA, Carter EJ (2008) Brain mechanisms for social perception: lessons from autism and typical development. Ann N Y Acad Sci 1145:283–299

    PubMed  PubMed Central  Google Scholar 

  • Pfeiffer C, Serino A, Blanke O (2014) The vestibular system: a spatial reference for bodily self-consciousness. Front Integr Neurosci 17:31. https://doi.org/10.3389/fnint.2014.00031

    Article  Google Scholar 

  • Poppel E, Harvey LO Jr (1973) Light-difference threshold and subjective brightness in the periphery of the visual field. Psychologische Forechung 36:145–161

    CAS  Google Scholar 

  • Previc FH, Mullen TJ (1991) A comparison of the latencies of visually induced postural change and self-motion perception. J Vestib Res 1:317–323

    CAS  Google Scholar 

  • Prothero J (1993) The treatment of Akinesia using virtual images. Master’s thesis, University of Washington, College of Engineering

    Google Scholar 

  • Prsa M, Gale S, Blanke O (2012) Self-motion leads to mandatory cue fusion across sensory modalities. J Neurophysiol 108:2282–2291

    PubMed  Google Scholar 

  • Pugnetti L, Mendozzi L, Motta A, Cattaneo A, Barbieri E, Brancotti S (1995) Evaluation and retraining of adults’ cognitive impairments: which role for virtual reality technology? Comput Inform Biol Med 25:213–227

    CAS  Google Scholar 

  • Pugnetti L, Mendozzi L, Attree EA, Barbieri E, Brooks BM, Cazzullo CL, Motta A, Rose FD (1998) Probing memory and executive functions with virtual reality: past and present studies. CyberPsychol Behav 1:151–162

    Google Scholar 

  • Ray CA, Monahan KD (2002) Aging attenuates the vestibulosympathetic reflex in humans. Circulation 26:956–961

    Google Scholar 

  • Recanzone GH, Merzenich MM, Jenkins WM et al (1992) Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency discrimination task. J Neurophysiol 67:1031–1056

    CAS  PubMed  Google Scholar 

  • Riecke BE (2016) Using spatializedy sound to enhance self-motion perception in virtual environments and beyond: auditory and multimodal contributions. J Can Acoust Assoc 44(3)

    Google Scholar 

  • Riva G (1997) Virtual reality in neuro-psychophysiology: cognitive, clinical and methodological issues in assessment and rehabilitation. IOS Press, Amsterdam

    Google Scholar 

  • Riva G, Wiederhold B, Molinari E (1998) Virtual environments in clinical psychology and neuroscience : methods and techniques in advanced patient–therapist interaction. Section I. IOS Press, Amsterdam, pp 1–59

    Google Scholar 

  • Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, Gaggioli A, Botella C, Alcaniz M (2007) Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol Behav 10(1):45–56

    PubMed  Google Scholar 

  • Roll JP, Roll R (1987a) Kinaesthetic and motor effects of extraocular vibration in man. In: Regan JKO, Levy-Schoen A (eds) Eye movements : from physiology to cognition. Elsevier/North Holland, Amsterdam, pp 57–68

    Google Scholar 

  • Roll JP, Roll R (1987b) La proprioception extra-oculaire comme élément de référence postural et de lecture spatiale des données rétiniennes. Agressologie 28:905–912

    CAS  PubMed  Google Scholar 

  • Roll R, Velay JL, Roll JP (1991a) Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in usually oriented activities. Exp Brain Res 85:423–431

    CAS  PubMed  Google Scholar 

  • Roll JP, Roll R, Velay JP (1991b) Proprioception as a link between body space and extra-personal space. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 112–132

    Google Scholar 

  • Roll R, Kavounoudias A, Roll JP (2002) Cutaneous afferents from human plantar sole contribute to body posture awareness. NeuroReport 13(15):1957–1961

    PubMed  Google Scholar 

  • Rose FD, Attree EA, Brooks BM, Andrews TK (2001) Learning and memory in virtual environments – a role in neurorehabilitation? Questions (and occasional answers) from UEL. Presence Teleop Virt Environ 10:345–358. 70. R

    Google Scholar 

  • Ross WD (1931) The works of Aristocle Volume III Parva Naturalia De Somniis translated by Beare JI: Charendon Press, Oxford.

    Google Scholar 

  • Sadowski W Jr, Stanney KM (2002) Presence in virtual environments. In: Stanney KM (ed) Handbook of virtual environments: design, implementation and applications. IEA, Mahwah, pp 791–806

    Google Scholar 

  • San Roque L, Floyd S, Norcliffe E (2017) Evidentiality and interrogative. Lingua 186–187:120–143

    Google Scholar 

  • Sanchez-Vives M, Slater M (2005) From presence to consciousness through virtual reality. Perspectives 6:332–339

    CAS  Google Scholar 

  • Sauvan X (1988) Etude psychophysique de la vection curvilinéaire et de la vection rectilinéaire. Thèse de Doctorat, Paris VI

    Google Scholar 

  • Sauvan X, Bonnet C (1989) Les sensations de déplacement curvilinéaire générées visuellement. Psychol Fr 34:19–24

    Google Scholar 

  • Sauvan X, Bonnet C (1993) Properties of curvilinear vection. Percept Psychophys 53:429–435

    CAS  PubMed  Google Scholar 

  • Schilbach L, Wilms M, Eickhoff SB, Romanzetti S, Tepest R, Bente G, Shah NJ, Fink GR, Vogeley K (2010) Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry. J Cogn Neurosci 22(12):2702–2715

    PubMed  Google Scholar 

  • Schloerb DW (1995) A quantitative measure of telepresence. Presence Teleop Virt 4:64–80

    Google Scholar 

  • Schneider GE (1969) Two visual systems. Science 163:895–902

    CAS  PubMed  Google Scholar 

  • Sheridan MD (1999) Play in early childhood: from birth to six years. Routledge, Hoboken

    Google Scholar 

  • Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12(21):1–11

    Google Scholar 

  • Shubert T, Friedmann F, Regenbrecht H (2001) The experience of presence: factor analytic insights. Presence 10(3):266–281

    Google Scholar 

  • Slater M (2004) Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Trans R Soc London: Ser B Biol Sci 364(1535):3549–3557

    Google Scholar 

  • Slater M, Wilbur S (1997) A Framework for Immersive Virtual Environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleop Virt Environ Arch 6(6):603–616

    Google Scholar 

  • Slater M, Usoh M, Steed A (1994) Depth of presence in virtual environments. Presence 3(2):130–144

    Google Scholar 

  • Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV (2008) Towards a digital body: the virtual arm illusion. Front Hum Neurosci. 20:2–6. https://doi.org/10.3389/neuro.09.006.2008

    Article  Google Scholar 

  • Straube A, Brandt T (1987) Importance of the visual and vestibular cortex for the self-motion perception in man (circularvection). Hum Neurobiol 6:211–218

    CAS  PubMed  Google Scholar 

  • Strickland D (1996) Brief report: two case studies using virtual reality as a learning tool for autistic children. J Autism Dev Disord 26(6):651–659

    CAS  PubMed  Google Scholar 

  • Sveistrup H, Foster EC, Woollacott MH (1992) Changes in effect of visual flow on postural control across the lifespan. In: Woollacott M, Horak F (eds) Posture and gait: control mechanisms, vol II. University of Oregon Books, Portland, pp 224–227

    Google Scholar 

  • Tanaka N, Takagi H (2003) Virtual reality environment design of managing both presence and virtual reality sickness. J Physiol Anthropol Appl Hum Sci 23(6):313–317

    Google Scholar 

  • Tardy-Gervet MF, Gilhodes JC, Roll JP (1982) Demostration of an illusory limb motion and associated motor activities induced by a moving visual stimulus in man. Neurosci Lett 28:187–192

    CAS  PubMed  Google Scholar 

  • Tardy-Gervet MF, Gilhodes JC, Roll JP (1984) Perceptual and motor effects eliced by a moving visual stimulus below the forearm : an example of segmentary vection. Behav Brain Res 11:171–184

    CAS  PubMed  Google Scholar 

  • Telford L, Frost BJ (1993) Factors affecting the onset and magnitude of linear vection. Percept Psychophys 53:652–692

    Google Scholar 

  • Telford L, Spratley J, Frost BJ (1992) Linear vection in the central visual field facilitated by kinetic depth cues. Perception 21:337–349

    CAS  PubMed  Google Scholar 

  • Thalman WA (1921) The aftereffect of seen movement when whole visual field is filled by a moving stimulus. Am J Psychol 32:429–441

    Google Scholar 

  • Thurrell A, Bronstein A (2002) Vection increases the magnitude and accuracy of visually evoked postural responses. Exp Brain Res 147:558–560

    CAS  PubMed  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH (1981) Responses to head tilt in cat eighth nerve afferents. Exp Brain Res 41:216–221

    CAS  PubMed  Google Scholar 

  • Trevarthen CB (1968) Two mechanisms of vision in primates. Psychol Forsch 31(4):299–348

    CAS  PubMed  Google Scholar 

  • Tschermak A (1931) Optischer Raumsinn. In: Bethe A et al (eds) Handbuch der normalen und pathologischen Physiologie. Berlin, Springer

    Google Scholar 

  • Urbantschitsch V (1897) Über Störungen des Gleichgewichtes und Scheinbewegungen. Z Ohrenheilk 31:234–294

    Google Scholar 

  • Väljamäe A (2009) Auditory-induced illusory self-motion: a review. Brain Res Rev 61:240–255. https://doi.org/10.1016/j.brainresrev.2009.07.001

    Article  PubMed  Google Scholar 

  • Väljamäe A, Sell S (2014) The influence of imagery vividness on cognitive and perceptual cues in circular auditorily-induced vection. Front Psychol 5:1362. https://doi.org/10.3389/fpsyg.2014.01362

    Article  PubMed  PubMed Central  Google Scholar 

  • Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2004) Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. In: Proceedings of the Seventh Annual Workshop of Presence (Valencia), pp 141–147

    Google Scholar 

  • van Elk M, Blanke O (2014) Imagined own-body transformations during passive self-motion. Psychol Res 78:18–27

    PubMed  Google Scholar 

  • Vanni-Mercier G, Magnin M (1982) Single neuron activity related to natural vestibular stimulation in the cat's visual cortex. Exp Brain Res 45(3):451–455

    CAS  PubMed  Google Scholar 

  • von Stein S (1910) Schwindel (Autokinesis externa et interna). O. Lessier

    Google Scholar 

  • Walsh EG (1960) Perception of linear motion following unilateral labyrinthectomy : variation of threshold according to the orientation of the head. J Physiol Lond 153:350–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh EG (1961) Role of the vestibular apparatus in the perception of motion on a parallel swing. Journal of Physiology 155:506–513

    CAS  PubMed  Google Scholar 

  • Wann JP, Rushton S, Non-Williams M (1994) Natural problems for stereoscopic depth perception in virtual environments. Vis Res 35:2731–2736

    Google Scholar 

  • Wann JP, Rushton SK, Smyth M, Jones D (1998) Virtual environments in the rehabilitation of disorders of attention and movement. In: Riva G, Wiederhold BK, Molinari E (eds) Virtual environments in clinical psychology and neuroscience : methods and techniques in advanced patient interaction. IOS Press, Amsterdam, pp 157–164

    Google Scholar 

  • Warren HC (1895) Sensations of rotations. Psychol Rev 2:273–276

    Google Scholar 

  • Warren HC (1933) Dictionary of psychology. George Allen and Unwin, London

    Google Scholar 

  • Warren R, Wertheim AH (1990) Perception and control of self-motion. Erlbaum, Hillsdale

    Google Scholar 

  • Wei S, Yang H, Abbaspour K, Mousavi J, Gnauck A (2010) Game theory based models to analyze water conflicts in the middle route of the south-to north water transfer project in China. Water Res 44:2499–2516

    CAS  PubMed  Google Scholar 

  • Wertheim AH (1990) Visual, vestibular and oculomotor interactions in the perception of object motion during locomotion. In: Warren R, Wertheim AH (eds) Perception control and self-motion. Erlbaum, Hillsdale, pp 171–210

    Google Scholar 

  • Wertheim AH (1994) Motion perception during self-motion: the direct versus inferential controversy revisited. Behav Brain Sci 17:293–355

    Google Scholar 

  • Wilms M, Schilbach L, Pfeiffer U, Bente G, Fink G, Vogeley K (2010) It’s in your eyes—using gaze-contingent stimuli to create truly interactive paradigms for social cognition and affective neuroscience. Soc Cogn Affect Neurosci 5(1):98–107

    PubMed  PubMed Central  Google Scholar 

  • Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence Teleop Virt Environ 7(3)

    Google Scholar 

  • Won AS, Bailenson J, Lee J, Lanier J (2015) Homuncular flexibility in virtual reality. J Comput-Mediat Commun 20(3):241–259

    Google Scholar 

  • Wood RW (1895) The haunted swing illusion. Psychol Rev 2:227–278

    Google Scholar 

  • Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs. J Vestib Res 15:185–195

    CAS  PubMed  Google Scholar 

  • Wright WG, DiZio P, Lackner JR (2006) Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J Vestib Res 16:23–28

    PubMed  Google Scholar 

  • Yates BJ, Bolton PS, Macefield VG (2014a) Vestibular-sympathetic responses. Compr Physiol 4:851–887. https://doi.org/10.1002/cphy.c130041

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates BJ, Bolton PS, Macefield VG (2014b) Macefield, vestibulo-sympathetic responses. Compr Physiol 4(2):851–887

    PubMed  PubMed Central  Google Scholar 

  • Young LR (1981) Visual and Vestibular influences in human self-motion perception. In: Gualtierotti T (ed) The vestibular system: function and morphology. Springer, New York, pp 393–424

    Google Scholar 

  • Young LR, Shelhamer M (1990) Weightlessness enhances the relative contribution of visually-induced self motion. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 523–538

    Google Scholar 

  • Young LR, Dichgans J, Murphy R, Brandt T (1973) Interaction of optokinetic and vestibular stimuli in motion perception. Acta Otolaryngol 76:24–31

    CAS  PubMed  Google Scholar 

  • Young LR, Crites TA, Oman CM (1983) Brief weightlesness and tactile cues influence visually induced roll. In: Pfaltz CR (ed) Advances in oto-rhino-laryngology, vol XXX. Karger, Basel, pp 230–234

    Google Scholar 

  • Young LR, Shelhamer M, Modestino S (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 2. Visual vestibular tilt interaction in weightlessness. Exp Brain Res 64:299–307

    CAS  PubMed  Google Scholar 

  • Zacharias GL, Young LR (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp Brain Res 41:159–171

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giannopulu, I. (2018). Externalised Mind 2. In: Neuroscience, Robotics and Virtual Reality: Internalised vs Externalised Mind/Brain. Cognitive Computation Trends, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-95558-2_5

Download citation

Publish with us

Policies and ethics