D.L. Alspach, H.W. Sorenson, Nonlinear bayesian estimation using gaussian sum approximations. IEEE Trans. Autom. Control 17, 439–448 (1972)
CrossRef
Google Scholar
M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proc. 50(2), 174–188 (2002)
CrossRef
Google Scholar
T. Bengtsson, C. Snyder, D. Nychka, Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775 (2003)
CrossRef
Google Scholar
H.L. Choi, Adaptive sampling and forecasting with mobile sensor networks. Ph.D. thesis, Massachusetts Institute of Technology, 2009
Google Scholar
H.-L. Choi, S.-J. Lee, A potential game approach for information-maximizing cooperative planning of sensor networks. IEEE Trans. Control Syst. Technol. 23(6), 2326–2335 (2015)
CrossRef
Google Scholar
S.C. Choi, R. Wette, Maximum likelihood estimation of the parameters of the Gamma distribution and their bias. Technometrics 11, 683–690 (1969)
CrossRef
Google Scholar
L. Dovera, E.D. Rossa, Multimodal ensemble Kalman filtering using gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)
CrossRef
Google Scholar
J. Dunik, O. Straka, M. Simandl, E. Blasch, Sigma-point set rotation for derivative-free filters in target tracking applications. J. Adv. Inf. Fusion 11(1), 91–109 (2016)
Google Scholar
J. Duyck, C. Finn, A. Hutcheon, P. Vera, J. Salas, S. Ravela, Sloop: a pattern retrieval engine for individual animal identification. Pattern Recognit. 48(4), 1059–1073 (2015)
CrossRef
Google Scholar
S. Dzeroski, B. Zenko, Is combining classifiers better than selecting the best one? in Proceedings of the Nineteenth International Conference on Machine Learning (ICML ’02) (Morgan Kaufmann, San Francisco, 2004) pp. 255–273
MATH
Google Scholar
G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)
CrossRef
Google Scholar
M. Frei, H.R. Kunsch, Mixture ensemble Kalman filters. Comput. Stat. Data Anal. 58, 127–138 (2013)
MathSciNet
CrossRef
Google Scholar
J. Gama, P. Brazdil, Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)
CrossRef
Google Scholar
A. Gelb, Applied Optimal Estimation (The MIT Press, Cambridge, 1974)
Google Scholar
I. Hoteit, D.T. Pham, G. Triantafyllou, G. Korres, A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Weather Rev. 136, 317–334 (2008)
CrossRef
Google Scholar
J.N. Kapur, Measures of Information and Their Applications (Wiley, New Delhi, 1994)
MATH
Google Scholar
C. Kern, C. Werner, T. Elias, A.J. Sutton, P. Lubcke, Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes. J. Volcanol. Geotherm. Res. 262, 80–89 (2013)
CrossRef
Google Scholar
R. Liu, D.F. Gillies, An estimate of mutual information that permits closed-form optimization. Entropy 15, 1690–1704 (2013)
MathSciNet
CrossRef
Google Scholar
E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
CrossRef
Google Scholar
G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley-Interscience, Hoboken, 2008)
CrossRef
Google Scholar
E. Parzen, On the estimation of probability density function and the mode. Ann. Math. Stat. 33, 1065 (1962)
MathSciNet
CrossRef
Google Scholar
J.W. Principe, J.W. Fisher, D. Xu, Information Theoretic Learning (Wiley, New York, 2000)
MATH
Google Scholar
J. Prüher, F. Tronarp, T. Karvonen, S. Särkkä, O. Straka, Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise, in International Conference on Information Fusion, Piscataway, 2017
Google Scholar
S. Ravela, Data assimilation by maximizing mutual information. Geophys. Res. Abstr. 10, EGU2008–A–11090 (2008)
Google Scholar
S. Ravela, Quantifying uncertainty for coherent structures. Proc. Comput. Sci. 9, 1187–1196 (2012)
CrossRef
Google Scholar
S. Ravela, Mapping coherent atmospheric structures with small unmanned aircraft systems, in AIAA InfotechAerospace (IA) Conference, Guidance, Navigation, and Control and Co-located Conferences, (AIAA 2013-4667), 2013
Google Scholar
S. Ravela, Spatial inference for coherent geophysical fluids by appearance and geometry, in Winter Conference on Applications of Computer Vision, 2014
Google Scholar
S. Ravela, Dynamic data-driven deformable reduced models for coherent fluids. Proc. Comput. Sci. 51, 2464–2473 (2015)
CrossRef
Google Scholar
S. Ravela, D. McLaughlin, Fast ensemble smoothing. Ocean Dyn. 57, 123–134 (2007)
CrossRef
Google Scholar
S. Ravela, K. Emanuel, M. McLaughlin, Data assimilation by field alignment. Physica D 230, 127–145 (2007)
MathSciNet
CrossRef
Google Scholar
A Renyi, On measure of entropy and information, in Fourth Symposium on Mathematical Statistics and Probability, Berkeley, 1961
Google Scholar
H. Seybold, S. Ravela, P. Tagade, Ensemble learning in non-gaussian data assimilation. Lect. Notes Comput. Sci. 8964, 227–238 (2015)
CrossRef
Google Scholar
C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)
MathSciNet
CrossRef
Google Scholar
K.W. Smith, Cluster ensemble Kalman filter. Tellus 59, 749–757 (2007)
CrossRef
Google Scholar
T. Sondergaard, P.F.J. Lermusiaux, Data assimilation with gaussian mixture models using dynamically orthogonal field equations. Part 1: theory and scheme. Mon. Weather Rev. 141, 1737–1760 (2013)
Google Scholar
P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems, in Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, 10–12 June 2014, pp. 1266–1276
Google Scholar
P.M. Tagade, H.-L. Choi, A dynamic bi-orthogonality based approach for uncertainty quantification of stochastic systems with discontinuities. ASME J. Verification, Validation Uncertain. Quantif. 2(1), 011003–011012 (2017)
Google Scholar
P.M. Tagade, S. Ravela, A quadratic information measure for data assimilation, in American Control Conference, Portland, 2014
Google Scholar
Y. Tomita, S. Omatu, T. Soeda, An application of the information theory to filtering problems. Inf. Sci. 11, 13–27 (1976)
CrossRef
Google Scholar
K. Torkkola, Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)
MathSciNet
MATH
Google Scholar
D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)
CrossRef
Google Scholar
C.M. Yang, S. Ravela, Deformation invariant image matching by spectrally controlled diffeomorphic alignment, in 2009 IEEE 12th International Conference on Computer Vision, Piscataway, 2009, pp. 1303–1310
Google Scholar