Skip to main content

Tractable Non-Gaussian Representations in Dynamic Data Driven Coherent Fluid Mapping

  • 1086 Accesses

Abstract

This chapter discusses the elements of a Dynamic Data Driven Applications System in the context of mapping coherent environmental fluids using autonomous small unmanned aircraft. The application and and its underlying system dynamics and optimization are presented along with three key ideas. The first is that of a dynamically deformable reduced model, which enables efficacious prediction by solving non-Gaussian problems associated with coherent fluids. The second is the use of ensemble learning in nonlinear estimation, which mitigates model errors in the form of bias, reduces sampling burdens in estimation whilst offering direct state space adjustments for filtering and smoothing and producing compact posterior ensembles. The third idea is the use of tractable variational information theoretic inference in estimation that also requires minimal resampling and allows for gradient-based inferences for non-Gaussian high-dimensional problems with few samples.

Keywords

  • Coherent Fluid
  • Posterior Ensemble
  • Dynamic Data Driven Application Systems
  • Ensemble Kalman Filter (EnKF)
  • Quadratic Mutual Information

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95504-9_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95504-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8

Notes

  1. 1.

    Maximum a posteriori (MAP) problem can also be solved.

References

  1. D.L. Alspach, H.W. Sorenson, Nonlinear bayesian estimation using gaussian sum approximations. IEEE Trans. Autom. Control 17, 439–448 (1972)

    CrossRef  Google Scholar 

  2. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proc. 50(2), 174–188 (2002)

    CrossRef  Google Scholar 

  3. T. Bengtsson, C. Snyder, D. Nychka, Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775 (2003)

    CrossRef  Google Scholar 

  4. H.L. Choi, Adaptive sampling and forecasting with mobile sensor networks. Ph.D. thesis, Massachusetts Institute of Technology, 2009

    Google Scholar 

  5. H.-L. Choi, S.-J. Lee, A potential game approach for information-maximizing cooperative planning of sensor networks. IEEE Trans. Control Syst. Technol. 23(6), 2326–2335 (2015)

    CrossRef  Google Scholar 

  6. S.C. Choi, R. Wette, Maximum likelihood estimation of the parameters of the Gamma distribution and their bias. Technometrics 11, 683–690 (1969)

    CrossRef  Google Scholar 

  7. L. Dovera, E.D. Rossa, Multimodal ensemble Kalman filtering using gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)

    CrossRef  Google Scholar 

  8. J. Dunik, O. Straka, M. Simandl, E. Blasch, Sigma-point set rotation for derivative-free filters in target tracking applications. J. Adv. Inf. Fusion 11(1), 91–109 (2016)

    Google Scholar 

  9. J. Duyck, C. Finn, A. Hutcheon, P. Vera, J. Salas, S. Ravela, Sloop: a pattern retrieval engine for individual animal identification. Pattern Recognit. 48(4), 1059–1073 (2015)

    CrossRef  Google Scholar 

  10. S. Dzeroski, B. Zenko, Is combining classifiers better than selecting the best one? in Proceedings of the Nineteenth International Conference on Machine Learning (ICML ’02) (Morgan Kaufmann, San Francisco, 2004) pp. 255–273

    MATH  Google Scholar 

  11. G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    CrossRef  Google Scholar 

  12. M. Frei, H.R. Kunsch, Mixture ensemble Kalman filters. Comput. Stat. Data Anal. 58, 127–138 (2013)

    MathSciNet  CrossRef  Google Scholar 

  13. J. Gama, P. Brazdil, Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)

    CrossRef  Google Scholar 

  14. A. Gelb, Applied Optimal Estimation (The MIT Press, Cambridge, 1974)

    Google Scholar 

  15. I. Hoteit, D.T. Pham, G. Triantafyllou, G. Korres, A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Weather Rev. 136, 317–334 (2008)

    CrossRef  Google Scholar 

  16. J.N. Kapur, Measures of Information and Their Applications (Wiley, New Delhi, 1994)

    MATH  Google Scholar 

  17. C. Kern, C. Werner, T. Elias, A.J. Sutton, P. Lubcke, Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes. J. Volcanol. Geotherm. Res. 262, 80–89 (2013)

    CrossRef  Google Scholar 

  18. R. Liu, D.F. Gillies, An estimate of mutual information that permits closed-form optimization. Entropy 15, 1690–1704 (2013)

    MathSciNet  CrossRef  Google Scholar 

  19. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    CrossRef  Google Scholar 

  20. G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley-Interscience, Hoboken, 2008)

    CrossRef  Google Scholar 

  21. E. Parzen, On the estimation of probability density function and the mode. Ann. Math. Stat. 33, 1065 (1962)

    MathSciNet  CrossRef  Google Scholar 

  22. J.W. Principe, J.W. Fisher, D. Xu, Information Theoretic Learning (Wiley, New York, 2000)

    MATH  Google Scholar 

  23. J. Prüher, F. Tronarp, T. Karvonen, S. Särkkä, O. Straka, Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise, in International Conference on Information Fusion, Piscataway, 2017

    Google Scholar 

  24. S. Ravela, Data assimilation by maximizing mutual information. Geophys. Res. Abstr. 10, EGU2008–A–11090 (2008)

    Google Scholar 

  25. S. Ravela, Quantifying uncertainty for coherent structures. Proc. Comput. Sci. 9, 1187–1196 (2012)

    CrossRef  Google Scholar 

  26. S. Ravela, Mapping coherent atmospheric structures with small unmanned aircraft systems, in AIAA InfotechAerospace (IA) Conference, Guidance, Navigation, and Control and Co-located Conferences, (AIAA 2013-4667), 2013

    Google Scholar 

  27. S. Ravela, Spatial inference for coherent geophysical fluids by appearance and geometry, in Winter Conference on Applications of Computer Vision, 2014

    Google Scholar 

  28. S. Ravela, Dynamic data-driven deformable reduced models for coherent fluids. Proc. Comput. Sci. 51, 2464–2473 (2015)

    CrossRef  Google Scholar 

  29. S. Ravela, D. McLaughlin, Fast ensemble smoothing. Ocean Dyn. 57, 123–134 (2007)

    CrossRef  Google Scholar 

  30. S. Ravela, K. Emanuel, M. McLaughlin, Data assimilation by field alignment. Physica D 230, 127–145 (2007)

    MathSciNet  CrossRef  Google Scholar 

  31. A Renyi, On measure of entropy and information, in Fourth Symposium on Mathematical Statistics and Probability, Berkeley, 1961

    Google Scholar 

  32. H. Seybold, S. Ravela, P. Tagade, Ensemble learning in non-gaussian data assimilation. Lect. Notes Comput. Sci. 8964, 227–238 (2015)

    CrossRef  Google Scholar 

  33. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  CrossRef  Google Scholar 

  34. K.W. Smith, Cluster ensemble Kalman filter. Tellus 59, 749–757 (2007)

    CrossRef  Google Scholar 

  35. T. Sondergaard, P.F.J. Lermusiaux, Data assimilation with gaussian mixture models using dynamically orthogonal field equations. Part 1: theory and scheme. Mon. Weather Rev. 141, 1737–1760 (2013)

    Google Scholar 

  36. P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems, in Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, 10–12 June 2014, pp. 1266–1276

    Google Scholar 

  37. P.M. Tagade, H.-L. Choi, A dynamic bi-orthogonality based approach for uncertainty quantification of stochastic systems with discontinuities. ASME J. Verification, Validation Uncertain. Quantif. 2(1), 011003–011012 (2017)

    Google Scholar 

  38. P.M. Tagade, S. Ravela, A quadratic information measure for data assimilation, in American Control Conference, Portland, 2014

    Google Scholar 

  39. Y. Tomita, S. Omatu, T. Soeda, An application of the information theory to filtering problems. Inf. Sci. 11, 13–27 (1976)

    CrossRef  Google Scholar 

  40. K. Torkkola, Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)

    MathSciNet  MATH  Google Scholar 

  41. D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)

    CrossRef  Google Scholar 

  42. C.M. Yang, S. Ravela, Deformation invariant image matching by spectrally controlled diffeomorphic alignment, in 2009 IEEE 12th International Conference on Computer Vision, Piscataway, 2009, pp. 1303–1310

    Google Scholar 

Download references

Acknowledgements

This work was in part supported by AFOSR(FA9550-12-1-0313) and NSF DBI-1146747, the MISTI seed fund, a Seaver award and an ESI seed grant. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF or AFOSR or MISTI. Special thanks to K. Emanuel, J. How, H.-L. Choi, J. Salas, P. Tagade, C. Denamiel, H. Seybold, R. Westlund, O. Gonzalez, B. Rosas and many undergraduate students and collaborators of ESSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ravela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ravela, S. (2018). Tractable Non-Gaussian Representations in Dynamic Data Driven Coherent Fluid Mapping. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95504-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95503-2

  • Online ISBN: 978-3-319-95504-9

  • eBook Packages: Computer ScienceComputer Science (R0)