Advertisement

An Introduction to Social Network Analysis for Creativity Research

  • Alexander S. McKay
Chapter
Part of the Palgrave Studies in Creativity and Culture book series (PASCC)

Abstract

Although social networks and creativity have been studied together in the organizational and sociology literature, it has received less attention within the dominant creativity journals. The current chapter discusses social network analysis for creativity research. The chapter reviews the basic building blocks of social networks (nodes and edges) and the mathematical foundations of social network analysis (graph theory and matrix algebra). Key considerations of defining network boundaries are discussed for collecting social network data. Then, two commonly used measures and terms, centrality and subgroups, in the social network literature are defined. The chapter provides a brief overview of network visualization and available software packages for conducting social network research. The chapter concludes by highlighting the types of research questions that can be answered using social network analysis, presenting selected published studies as examples along with their findings.

Keywords

Creativity Innovation Social networks Centrality Social network methodology 

References

  1. Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45, 357–376.  https://doi.org/10.1037/0022-3514.45.2.357.CrossRefGoogle Scholar
  2. Baer, M. (2010). The strength-of-weak-ties perspective on creativity: A comprehensive examination and extension. Journal of Applied Psychology, 95, 592–601.  https://doi.org/10.1037/a0018761.CrossRefPubMedGoogle Scholar
  3. Baer, M. (2012). Putting creativity to work: The implementation of creative ideas in organizations. Academy of Management Journal, 55, 1102–1119.  https://doi.org/10.5465/amj.2009.0470.CrossRefGoogle Scholar
  4. Baer, M., Evans, K., Oldham, G. R., & Boasso, A. (2015). The social network side of individual innovation: A meta-analysis and path-analytic integration. Organizational Psychology Review, 5, 191–223.  https://doi.org/10.1177/2041386614564105.CrossRefGoogle Scholar
  5. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media. Retrieved from https://gephi.org/
  6. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120.  https://doi.org/10.1080/0022250X.1972.9989806.CrossRefGoogle Scholar
  7. Borgatti, S. P. (2002). NetDraw software for network visualization. Lexington, KY: Analytic Technologies.Google Scholar
  8. Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2002). Ucinet for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.Google Scholar
  9. Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2013). Analyzing social networks. London: Sage Publications.Google Scholar
  10. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.  https://doi.org/10.1126/science.1165821.CrossRefPubMedGoogle Scholar
  11. Burt, R. S. (2011). Structural holes and good ideas. American Journal of Sociology, 110, 349–399.  https://doi.org/10.1086/421787.CrossRefGoogle Scholar
  12. Burt, R. S., Kilduff, M., & Tasselli, S. (2013). Social network analysis: Foundations and frontiers on advantage. Annual Review of Psychology, 64, 527–547.  https://doi.org/10.1146/annurev-psych-113011-143828.CrossRefPubMedGoogle Scholar
  13. Fang, R., Landis, B., Zhang, Z., Anderson, M. H., Shaw, J. D., & Kilduff, M. (2015). Integrating personality and social networks: A meta-analysis of personality, network position, and work outcomes in organizations. Organization Science, 26, 1243–1260.  https://doi.org/10.1287/orsc.2015.0972.CrossRefGoogle Scholar
  14. Felmlee, D. H. (2000). Interaction in social networks. In J. DeLamater (Ed.), Handbook of social psychology (pp. 389–409). New York: Kluwer Academic/Plenum Press.Google Scholar
  15. Fleming, L., King, C., & Juda, A. I. (2007). Small worlds and regional innovation. Organization Science, 18, 938–954.  https://doi.org/10.1287/orsc.1070.0289.CrossRefGoogle Scholar
  16. Fleming, L., Mingo, S., & Chen, D. (2007). Collaborative brokerage, generative creativity, and creative success. Administrative Science Quarterly, 52, 443–475.  https://doi.org/10.2189/asqu.52.3.443.CrossRefGoogle Scholar
  17. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.  https://doi.org/10.2307/3033543.CrossRefGoogle Scholar
  18. Freeman, L. C. (1978). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.  https://doi.org/10.1016/0378-8733(78)90021-7.CrossRefGoogle Scholar
  19. Glăveanu, V. P. (2015). Creativity as a sociocultural act. Journal of Creative Behavior, 49, 165–180.  https://doi.org/10.1002/jocb.94.CrossRefGoogle Scholar
  20. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.  https://doi.org/10.1086/225469.CrossRefGoogle Scholar
  21. Granovetter, M. S. (1983). The strength of weak ties: A network theory revisited. In R. Collins (Ed.), Sociological theory (pp. 201–233). San Francisco: Jossey-Bass.Google Scholar
  22. Grosser, T. J., Venkataramani, V., & Labianca, G. (2017). An alter-centric perspective on employee innovation: The importance of alters’ creative self-efficacy and network structure. Journal of Applied Psychology, 102, 1360–1374.  https://doi.org/10.1037/apl0000220.CrossRefPubMedGoogle Scholar
  23. Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2003). statnet: Software tools for the Statistical Modeling of Network Data. Retrieved from http://statnetproject.org
  24. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside: University of California, Riverside.Google Scholar
  25. Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10, 377–388.  https://doi.org/10.1037/aca0000056.CrossRefGoogle Scholar
  26. Kenett, Y. N., Levy, O., Kenett, D. Y., Stanley, H. E., Faust, M., & Havlin, S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings of the National Academy of Sciences., 115, 867.  https://doi.org/10.1073/pnas.1717362115.CrossRefGoogle Scholar
  27. Kéri, S. (2011). Solitary minds and social capital: Latent inhibition, general intellectual functions and social network size predict creative achievements. Psychology of Aesthetics, Creativity, and the Arts, 5, 215–221.  https://doi.org/10.1037/a0022000.CrossRefGoogle Scholar
  28. Kim, S. K., Shin, S. J., Shin, J., & Miller, D. R. (2016). Social networks and individual creativity: The role of individual differences. Journal of Creative Behavior.  https://doi.org/10.1002/jocb.153.
  29. Klein, K. J., Lim, B. C., Saltz, J. L., & Mayer, D. M. (2004). How do they get there? An examination of the antecedents of centrality in team networks. Academy of Management Journal, 47, 952–963.  https://doi.org/10.2307/20159634.CrossRefGoogle Scholar
  30. Laumann, E. O., Marsden, P. V., & Prensky, D. (1983). The boundary specification problem in network analysis. In R. Burt & M. Minor (Eds.), Applied network analysis (pp. 18–34). Beverly Hills, CA: Sage Publications.Google Scholar
  31. Marin, A., & Wellman, B. (2011). Social network analysis: An introduction. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 11–25). London: Sage Publications.  https://doi.org/10.4135/9781446294413.CrossRefGoogle Scholar
  32. McFadyen, M. A., & Cannella, A. A. (2004). Social capital and knowledge creation: Diminishing returns of the number and strength of exchange relationships. Academy of Management Journal, 47, 735–746.  https://doi.org/10.2307/20159615.CrossRefGoogle Scholar
  33. McKay, A. S., Grygiel, P., & Karwowski, M. (2017). Connected to create: A social network analysis of friendship ties and creativity. Psychology of Aesthetics, Creativity, and the Arts, 11, 284–294.  https://doi.org/10.1037/aca0000117.CrossRefGoogle Scholar
  34. Perry-Smith, J. E. (2006). Social yet creative: The role of social relationships in facilitating individual creativity. Academy of Management Journal, 49, 85–101.  https://doi.org/10.5465/AMJ.2006.20785503.CrossRefGoogle Scholar
  35. Perry-Smith, J. E., & Mannucci, P. V. (2015). Social networks, creativity, and entrepreneurship. In C. E. Shalley, M. A. Hitt, & J. Zhou (Eds.), The Oxford handbook of creativity, innovation, and entrepreneurship. New York: Oxford University Press.  https://doi.org/10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  36. Perry-Smith, J. E., & Mannucci, P. V. (2017). From creativity to innovation: The social network drivers of the four phases of the idea journal. Academy of Management Review, 42, 53–79.  https://doi.org/10.5465/amr.2014.0462.CrossRefGoogle Scholar
  37. Perry-Smith, J. E., & Shalley, C. E. (2003). The social side of creativity: A static and dynamic social network perspective. Academy of Management Review, 28, 89–106.  https://doi.org/10.2307/30040691.CrossRefGoogle Scholar
  38. Rost, K. (2011). The strength of strong ties in the creation of innovation. Research Policy, 40, 588–604.  https://doi.org/10.1016/j.respol.2010.12.001.CrossRefGoogle Scholar
  39. Shalley, C. E., Zhou, J., & Oldham, G. R. (2004). The effects of personal and contextual characteristics on creativity: Where should we go from here. Journal of Management, 30, 933–958.  https://doi.org/10.1016/jjm.2004.06.007.CrossRefGoogle Scholar
  40. Simonton, D. K. (1984). Artistic creativity and interpersonal relationships across and within generations. Journal of Personality and Social Psychology, 46, 1273–1286.  https://doi.org/10.1037//0022-3514.46.6.1273.CrossRefGoogle Scholar
  41. Smith, M., Ceni, A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., & Dunne, C. (2010). NodeXL: A free and open network overview, discovery and exploration add-in for Excel 2007/2010/2013/2016. Social Media Research Foundation. Retrieved from http://nodexl.codeplex.com/
  42. Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal of Sociology, 111, 447–504.  https://doi.org/10.1086/432782.CrossRefGoogle Scholar
  43. Wang, D. J., Shi, X., McFarland, D. A., & Leskovec, J. (2012). Measurement error in network data: A re-classification. Social Networks, 34, 396–409.  https://doi.org/10.1016/j.socnet.2012.01.003.CrossRefGoogle Scholar
  44. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  45. Woodman, R. W., Sawyer, J. E., & Griffin, R. W. (1993). Toward a theory of organizational creativity. Academy of Management Review, 18, 293–321.  https://doi.org/10.5465/AMR.1993.3997517.CrossRefGoogle Scholar
  46. Zhou, J., Shin, S. J., Brass, D. J., Choi, J., & Zhang, Z.-X. (2009). Social networks, personal values, and creativity: Evidence for curvilinear and interaction effects. Journal of Applied Psychology, 94, 1544–1552.  https://doi.org/10.1037/a0016285.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Alexander S. McKay
    • 1
  1. 1.Department of Management and Entrepreneurship, School of BusinessVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations