Advertisement

Creativity and the Social Brain

  • Anna Abraham
Chapter
Part of the Palgrave Studies in Creativity and Culture book series (PASCC)

Abstract

The neuroscience of imagination has revealed extensive parallels between the brain correlates of creative cognition and those of social cognition. There is, however, scarcely any exchange of ideas between the different research communities that is aimed at understanding what such commonalities reveal. The evidence indicates that there are some fundamental similarities in the very nature of the information processing mechanisms that underlie cognitive and social aspects of mental life that are customarily viewed to be quite distinct from one another. This chapter features reflections on these similarities by generating cross-connections between creative cognition and social cognition. Themes that are explored include candidate mechanisms of correspondences between creativity and social behaviour, such as the ‘intention to communicate or evoke’ (by means of expression), the ‘drive to understand’ (by means of inference and discovery), and the ‘personal relevance bias’ (by means of alertness to self-related salience and significance).

Keywords

Creative cognition Social cognition Neuroscience Expression Intention Inference Self relevance Salience Default mode Central executive Brain networks 

References

  1. Abraham, A. (2013). The world according to me: Personal relevance and the medial prefrontal cortex. Frontiers in Human Neuroscience, 7, 341.PubMedPubMedCentralGoogle Scholar
  2. Abraham, A. (2016). The imaginative mind. Human Brain Mapping, 37(11), 4197–4211.CrossRefGoogle Scholar
  3. Abraham, A. (2018a). The forest versus the trees: Creativity, cognition and imagination. In R. E. Jung & O. Vartanian (Eds.), Cambridge handbook of the neuroscience of creativity (pp. 195–210). New York: Cambridge University Press.CrossRefGoogle Scholar
  4. Abraham, A. (2018b). The neuroscience of creativity. New York: Cambridge University Press.Google Scholar
  5. Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., et al. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.CrossRefGoogle Scholar
  6. Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104(1), 322–335.CrossRefGoogle Scholar
  7. Assael, M., & Popovici-Wacks, M. (1989). Artistic expression in spontaneous paintings of depressed patients. The Israel Journal of Psychiatry and Related Sciences, 26(4), 223–243.PubMedGoogle Scholar
  8. Bar, M. (2009). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1235–1243.CrossRefGoogle Scholar
  9. Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
  10. Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., et al. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 201713532.Google Scholar
  11. Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25.PubMedPubMedCentralGoogle Scholar
  12. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefGoogle Scholar
  13. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181–204.CrossRefGoogle Scholar
  14. Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360.CrossRefGoogle Scholar
  15. Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives (pp. 325–340). Cambridge, MA: Cambridge University Press.Google Scholar
  16. Dennett, D. C. (1987). The intentional stance. Cambridge, Mass: MIT Press.Google Scholar
  17. Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 1783–1794.CrossRefGoogle Scholar
  18. Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(25), 10552–10558.CrossRefGoogle Scholar
  19. Ferstl, E. C., & von Cramon, D. Y. (2001). The role of coherence and cohesion in text comprehension: An event-related fMRI study. Cognitive Brain Research, 11(3), 325–340.CrossRefGoogle Scholar
  20. Ferstl, E. C., & von Cramon, D. Y. (2002). What does the frontomedian cortex contribute to language processing: Coherence or theory of mind? NeuroImage, 17(3), 1599–1612.CrossRefGoogle Scholar
  21. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734–748.CrossRefGoogle Scholar
  22. Forgeard, M. J. C., & Eichner, K. V. (2014). Creativity as a target and tool for positive interventions. In A. C. Parks & S. M. Schueller (Eds.), The Wiley Blackwell handbook of positive psychological interventions (pp. 135–154). Hoboken, NJ: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
  23. Forgeard, M. J. C., & Elstein, J. G. (2014). Advancing the clinical science of creativity. Frontiers in Psychology, 5, 613.CrossRefGoogle Scholar
  24. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefGoogle Scholar
  25. Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 671–678.CrossRefGoogle Scholar
  26. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534.CrossRefGoogle Scholar
  27. Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180–190.CrossRefGoogle Scholar
  28. Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(2), 264–272.CrossRefGoogle Scholar
  29. Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex; a. Journal Devoted to the Study of the Nervous System and Behavior, 49(3), 611–625.Google Scholar
  30. Jung, R. E., & Vartanian, O. (Eds.). (2018). The Cambridge handbook of the neuroscience of creativity. Cambridge: Cambridge University Press.Google Scholar
  31. Kröger, S., Rutter, B., Hill, H., Windmann, S., Hermann, C., & Abraham, A. (2013). An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Research, 1527, 189–198.CrossRefGoogle Scholar
  32. Kröger, S., Rutter, B., Stark, R., Windmann, S., Hermann, C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 52–61.CrossRefGoogle Scholar
  33. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.CrossRefGoogle Scholar
  34. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS One, 3(2), e1679.CrossRefGoogle Scholar
  35. Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., et al. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2, 834.CrossRefGoogle Scholar
  36. Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–396  https://doi.org/10.1037/h0054346.CrossRefGoogle Scholar
  37. McFadden, S. H., & Basting, A. D. (2010). Healthy aging persons and their brains: Promoting resilience through creative engagement. Clinics in Geriatric Medicine, 26(1), 149–161.CrossRefGoogle Scholar
  38. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667.CrossRefGoogle Scholar
  39. Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., & Cotman, C. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), 978–982.CrossRefGoogle Scholar
  40. Miller, Z. A., & Miller, B. L. (2013). Artistic creativity and dementia. Progress in Brain Research, 204, 99–112.CrossRefGoogle Scholar
  41. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4), 655–663.CrossRefGoogle Scholar
  42. Mu, Y., Kitayama, S., Han, S., & Gelfand, M. J. (2015). How culture gets embrained: Cultural differences in event-related potentials of social norm violations. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15348–15353.CrossRefGoogle Scholar
  43. Murray, R. J., Schaer, M., & Debbané, M. (2012). Degrees of separation: A quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection. Neuroscience and Biobehavioral Reviews, 36(3), 1043–1059.CrossRefGoogle Scholar
  44. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective & Behavioral Neuroscience, 12(2), 241–268.CrossRefGoogle Scholar
  45. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain--a meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457.CrossRefGoogle Scholar
  46. Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123–133.CrossRefGoogle Scholar
  47. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews. Neuroscience, 8(12), 976–987.CrossRefGoogle Scholar
  48. Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.CrossRefGoogle Scholar
  49. Roye, A., Jacobsen, T., & Schröger, E. (2007). Personal significance is encoded automatically by the human brain: An event-related potential study with ringtones. The European Journal of Neuroscience, 26(3), 784–790.CrossRefGoogle Scholar
  50. Rueschemeyer, S.-A., Gardner, T., & Stoner, C. (2015). The social N400 effect: How the presence of other listeners affects language comprehension. Psychonomic Bulletin & Review, 22(1), 128–134.CrossRefGoogle Scholar
  51. Rutter, B., Kröger, S., Hill, H., Windmann, S., Hermann, C., & Abraham, A. (2012a). Can clouds dance? Part 2: An ERP investigation of passive conceptual expansion. Brain and Cognition, 80(3), 301–310.CrossRefGoogle Scholar
  52. Rutter, B., Kröger, S., Stark, R., Schweckendiek, J., Windmann, S., Hermann, C., & Abraham, A. (2012b). Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition. Brain and Cognition, 78(2), 114–122.CrossRefGoogle Scholar
  53. Sawyer, R. K. (2012). Explaining creativity: The science of human innovation (2nd ed.). New York: Oxford University Press.Google Scholar
  54. Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124.CrossRefGoogle Scholar
  55. Schmitz, T. W., & Johnson, S. C. (2006). Self-appraisal decisions evoke dissociated dorsal-ventral aMPFC networks. NeuroImage, 30(3), 1050–1058.CrossRefGoogle Scholar
  56. Shah, C., Erhard, K., Ortheil, H.-J., Kaza, E., Kessler, C., & Lotze, M. (2011). Neural correlates of creative writing: An fMRI study. Human Brain Mapping.  https://doi.org/10.1002/hbm.21493.CrossRefGoogle Scholar
  57. Siebörger, F. T., Ferstl, E. C., & von Cramon, D. Y. (2007). Making sense of nonsense: An fMRI study of task induced inference processes during discourse comprehension. Brain Research, 1166, 77–91.CrossRefGoogle Scholar
  58. Spunt, R. P., Meyer, M. L., & Lieberman, M. D. (2015). The default mode of human brain function primes the intentional stance. Journal of Cognitive Neuroscience, 27(6), 1116–1124.CrossRefGoogle Scholar
  59. Sui, J., Rotshtein, P., & Humphreys, G. W. (2013, May 7). Coupling social attention to the self forms a network for personal significance. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7607–7612  https://doi.org/10.1073/pnas.1221862110.CrossRefGoogle Scholar
  60. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews. Neuroscience, 16(1), 55–61.CrossRefGoogle Scholar
  61. van Berkum, J. J., Hagoort, P., & Brown, C. M. (1999). Semantic integration in sentences and discourse: Evidence from the N400. Journal of Cognitive Neuroscience, 11(6), 657–671.CrossRefGoogle Scholar
  62. van der Meer, L., Costafreda, S., Aleman, A., & David, A. S. (2010). Self-reflection and the brain: A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia. Neuroscience & Biobehavioral Reviews, 34(6), 935–946.CrossRefGoogle Scholar
  63. Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology (London, England: 1953), 103(3), 302–316.CrossRefGoogle Scholar
  64. Wang, Y., Collins, J. A., Koski, J., Nugiel, T., Metoki, A., & Olson, I. R. (2017). Dynamic neural architecture for social knowledge retrieval. Proceedings of the National Academy of Sciences of the United States of America, 114(16), E3305–E3314.CrossRefGoogle Scholar
  65. Zaidel, D. W. (2014). Creativity, brain, and art: Biological and neurological considerations. Frontiers in Human Neuroscience, 8.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Anna Abraham
    • 1
  1. 1.School of Social SciencesLeeds Beckett UniversityLeedsUK

Personalised recommendations