Advertisement

Computational History: From Big Data to Big Simulations

  • Andrea NanettiEmail author
  • Siew Ann Cheong
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

The first section of this chapter gives an overview on how big data and their mathematical calculation enter in the historical discourse. It introduces the two main issues that prevent ‘big’ results from emerging so far. Firstly, the input is problematic because historical records cannot be easily and comprehensively decomposed into unambiguous fields, except for the population and taxation ones, which are rare and scattered throughout space and time till the nineteenth century. Secondly, even if we run machine-learning tools on properly structured data, big results cannot emerge until we built formal models, with explanatory and predictive powers. The second section of the chapter presents a complex network, data-driven approach to mining historical sources and supporting the perennial historical chase for truth. In the time-integrated network obtained by overlaying all records from the historians’ databases, the nodes are actors, while the links are actions. The third section explains how this tool allows historians to deal with historical data issues (e.g., source criticism, facts validation, trade-conflict-diplomacy relationships, etc.), and take advantage of automatic extraction of key narratives to formulate and test their hypotheses on the courses of history in other actions or in additional data sets. The conclusions describe the vision of how this narrative-driven analysis of historical big data can lead to the development of multiscale agent-based models and simulations to generate ensembles of counterfactual histories that would deepen our understanding of why our actual history developed the way it did and how to treasure these human experiences.

Notes

Acknowledgments

This study has been funded by 2016 Microsoft Research Asia Collaborative Research Program and 2016 Microsoft Azure for Research. The research project, called Engineering Historical Memory (EHM), was first theorized by Andrea Nanetti in 2007, when he was Visiting Scholar at Princeton University. The actual web development initiated in 2012 when he was Visiting Professor at the University of Venice Ca′ Foscari, and since 2013 has been carried out at Nanyang Technological University (NTU Singapore), where he is Associate Chair (Research) in the School of Art, Design and Media, and has been funded among others by an NTU Start-up Grant (2014–2016 M4081357), 2014 Microsoft Research Asia Collaborative Research Program, 2015 Microsoft Azure for Research, and 2016 Microsoft Research Internship Program. This study contributed to the application and kick off of the NTU TIER 1 Grant (2017--2019) on ‘‘Data Consolidation for Interactive Global Histories (1205--1533) within the NTU National and International Research Network: Towards an NTU Interdisciplinary Laboratory for Data-Driven Agent-Based Modelling and Simulations for Historical Sciences’’ (2017–2020 M4011828). The domain of EHM (www.engineeringhistoricalmemory.com) is administrated by Meduproject S.r.l., an Italian Pte Ltd. company established in 2002 by Andrea Nanetti as academic spin-off of the University of Bologna (Department of Histories and Methods for Cultural Heritage Conservation), after having been awarded in 2001 a prize in the first Italian business plan competition devoted to projects with high content of knowledge and having been financially supported by the Italian National Agency for New Technologies, Energy and Environment.

References

  1. Abulafia, D. (2011). The great sea: A human history of the Mediterranean. New York: Oxford University Press.Google Scholar
  2. Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.Google Scholar
  3. Aiden, E., & Michel, J.-B. (2013). Uncharted: Big data as a lens on human culture. New York: Riverhead.Google Scholar
  4. Alvarez, A. J., Sanz-Rodríguez, C. E., & Cabrera, J. L. (2015). Weighting dissimilarities to detect communities in networks. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 2056.  https://doi.org/10.1098/rsta.2015.0108.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Arthur, W. B. (2009). The nature of technology. What it is and how it evolves. New York: Free Press.Google Scholar
  6. Arthur, W. B. (2014). Complexity and the economy. Oxford: Oxford University Press.Google Scholar
  7. Axelrod, R. (1980). Effective choice in the prisoner’s dilemma. The Journal of Conflict Resolution, 24(3), 379–403.CrossRefGoogle Scholar
  8. Big History Project. (2012–Present). Big History Institute, Macquarie University, Sydney, Australia. Retrieved January 15, 2016, from https://www.bighistoryproject.com.
  9. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.  https://doi.org/10.1088/1742-5468/2008/10/P10008.CrossRefGoogle Scholar
  10. Brahe, T. (1993). In D. Rawlins (Ed.), Tycho’s star catalog: The first critical edition (Vol. 3, pp. 3–106). DIO.Google Scholar
  11. Burguière, A. (2006). L’École des annales: Une histoire intellectuelle. Paris: Odile Jacob.Google Scholar
  12. Burguière, A. (2009). Annales school: An intellectual history. Ithaca, NY: Cornell University Press.Google Scholar
  13. Cain, J. W. (2014). Mathematical models in the sciences. Cellular and Molecular Life Sciences.  https://doi.org/10.1007/978-1-4614-6436-5_561-1.Google Scholar
  14. CHIA. (2011). http://www.chia.pitt.edu/. Accessed 15 Jan 2017. Google Scholar
  15. Cohen, D. J., & Rosenzweig, R. (2005). Digital history: A guide to gathering, preserving, and presenting the past on the web. Philadelphia: University of Pennsylvania Press.Google Scholar
  16. de Rosnay, J. (1979). The macroscope: A new world scientific system. New York: Harper & Row.Google Scholar
  17. Digital Atlas of Roman and Medieval Civilizations. (2007–Present). Harvard University. Retrieved January 15, 2016, from http://darmc.harvard.edu.
  18. Eco, U. (1998). Serendipities: Language and lunacy, (W. Weaver, Trans.). New York: Columbia University Press.Google Scholar
  19. Eddington, A. S. (1929). The nature of the physical world. The Gifford lectures 1927. New York, Cambridge: Macmillan, Cambridge University Press See also the edition Annotated and Introduced by H. G. Callaway. Newcastle upon Tyne: Cambridge Scholars Publishing 2014.Google Scholar
  20. Engineering Historical Memory. (2012–Present). Meduproject S.r.l. (spin-off company of the University of Bologna) and Microsoft Azure. Retrieved January 15, 2016, from http://www.engineeringhistoricalmemory.com.
  21. Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies. Social science from the bottom up. Washington, DC: Brookings Institution, MIT Press.Google Scholar
  22. Galasso, G. (1984). Fonti storiche [Historical sources]. In Enciclopedia del Novecento, VII (pp. 198–212). Roma: Istituto dell’Enciclopedia Italiana.Google Scholar
  23. Galasso, G. (2000). Nient’altro che storia [Nothing but history]. Bologna: Società Editrice Il Mulino.Google Scholar
  24. Gavin, M. (2014). Agent-based modeling and historical simulation. Digital Humanities Quarterly. Retrieved from digitalhumanities.org/dhq/vol/8/4/000195/000195.html#p2
  25. Gell-Mann, M. (1997). The simple and the complex. In D. S. Alberts & T. J. Czerwinski (Eds.), Complexity, global politics, and national security (pp. 2–12). Washington, DC: National Defense University.Google Scholar
  26. Gilbert, F. (1990). History: Politics or culture? Reflections on Ranke and Burckhardt. Princeton, NJ: Princeton University Press.Google Scholar
  27. Ginzburg, C. (1980). Il formaggio e i vermi. Il cosmo di un mugnaio del ’500 [The Cheese and the worms: The cosmos of a sixteenth-century miller] (J. Tedeschi, A. Tedeschi, Trans.). Einaudi, Baltimore: Torino, Johns Hopkins University Press (Original work published 1976 (Italian)).Google Scholar
  28. Ginzburg, C. (1989). Miti, emblemi, spie [Clues, myths, and the historical method] (J. Tedeschi, & A. Tedeschi, Trans.). Torino Einaudi. Baltimore: Johns Hopkins University Press (Original work published 1986 (Italian)).Google Scholar
  29. Ginzburg, C. (2012a). Il filo e le tracce. Vero falso finto [Threads and Traces. True False Fictive] (A. Tedeschi, J. Tedeschi, Trans.). Bologna, Berkeley, CA: Feltrinelli, University of California Press (Original work published 1986 (Italian)).Google Scholar
  30. Ginzburg, C. (2012b). Microhistory, two or three things that I know about it. In Idem 2012. Op. cit., 193–214.Google Scholar
  31. Ginzburg, C. (2001). Conversare con orion. Quaderni Storici, 23(3), 905–913.Google Scholar
  32. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Science of the United States of America, 99(12), 7821–7826.MathSciNetCrossRefGoogle Scholar
  33. Gladwell, M. T. (2000). The Tipping Point: How Little Things Can Make a Big Difference. New York: Little Brown.Google Scholar
  34. Gould, S. Jay. (1989). Wonderful Life: The Burgess Shale and the Nature of History. London: Hutchinson Radius.Google Scholar
  35. Grafton, A. (1994). The footnote from de Thou to Ranke. In: A. Grafton, & S. L. Marchand (Eds.), Proof and persuasion in history. History & theory (Vol. 33, pp. 53–76), Hoboken, NJ: Wiley.Google Scholar
  36. Grafton, A. (1995). Die tragischen Ursprünge der deutschen Fußnote. Berlin: Wagenbach.Google Scholar
  37. Grafton, A. (1997). The footnote: A curious history. Cambridge: Harvard University Press.Google Scholar
  38. Grafton, A., & Marchand, S. L. (1994). Proof and persuasion in history. In History & theory (Vol. 33). Middletown: Wesleyan University Press.Google Scholar
  39. Grafton, A., Goeing, A., Michel, P., & Blauhut, A. (Eds.). (2013). Collectors’ knowledge: What is kept, what is discarded/Aufbewahren oder wegwerfen: Wie sammler entscheiden. Leiden: Brill.Google Scholar
  40. Graham, S., Milligan, I., & Weingart, S. (Eds.). (2016). Exploring big historical data. The Historian’s macroscope. London: Imperial College Press.Google Scholar
  41. Grinin L, A Korotayev (eds.). 2010. History & mathematics. Trends and cycles. Volgograd: ‘Uchitel’ Publishing House.Google Scholar
  42. Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 5(2), 199–220 tomgruber.org/writing/ontolingua-kaj-1993.htm.CrossRefGoogle Scholar
  43. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43(4–5), 907–928 tomgruber.org/writing/onto-design.htm.CrossRefGoogle Scholar
  44. Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology. In S. Staab & R. Studer (Eds.), Handbook on ontologies (pp. 153–176). Berlin: Springer Verlag.Google Scholar
  45. Guldi, J., & Armitage, D (2014). The history manifesto. Cambridge University Press, Cambridge. New updated version 5th February 2015, Retrieved January 7, 2017, from doi:  https://doi.org/10.1017/9781139923880.
  46. Halkin, H. (2001). The strange adventures of Jacob d’Ancona: Is a memoir of China purportedly written by a thirteenth-century Jewish merchant authentic? And if not, what then? Commentary Magazine, 111(4). https://www.commentarymagazine.com/articles/the-strange-adventures-of-jacob-dancona.
  47. Hirschi, C. (2011). The origins of nationalism. An alternative history from ancient Rome to early modern Germany. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Hitzbleck, K., & Hübner, K. (Eds.). (2014). Die Grenzen des Netzwerks 1200–1600. Ostfildern: Jan Thorbecke Verlag der Schwabenverlag AG.Google Scholar
  49. Holland, J. (1975). Adaptation in natural and artificial systems. An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press.zbMATHGoogle Scholar
  50. Holland, J. (1989). Induction: Processes of inference, learning, and discovery. Cambridge: MIT Press.Google Scholar
  51. Holland, J. (2000). Emergence: From chaos to order. Oxford: Oxford University Press.zbMATHGoogle Scholar
  52. Holland, J. (2012). Signals and boundaries: Building blocks for complex adaptive systems. Cambridge: MIT Press.Google Scholar
  53. Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. American Economic Review, 81(2), 365–371.Google Scholar
  54. Jockers, M. L. (2013). Macroanalysis: Digital methods & literary history. Champaign: University of Illinois Press.Google Scholar
  55. Joseph, B. D., & Janda, R. D. (2003). On language, change, and language change – Or, of history, linguistics, and historical linguistics. In B. D. Joseph & R. D. Janda (Eds.), The handbook of historical linguistics. Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  56. Joyner, C. W. (1999). Shared traditions: Southern history and folk culture. Urbana: University of Illinois.Google Scholar
  57. La, M. L. V. François de. 1669. Œuvres (Vol. 15). Paris: Libraire Louis Billaine [The fifth (and final) edition has been published in Dresde by Michel Groll between 1756 and 1759: Œuvres de François de La Mothe Le Vayer, conseiller d’État ordinaire, etc. Nouvelle édition revue et augmentée. Imprimée à Pfœrten, et se trouve à Drede chez Michel Groell, 7 tomes en 14 volumes in-8].Google Scholar
  58. Ladurie, E. L. R. (1973–1978). Le Territoire de L’Historien (Vol. 2). Paris: Gallimard.Google Scholar
  59. Le Goff, J., & Nora, P. (Eds.). (1974). Faire de l’histoire (Vol. 3). Paris: Gallimard.Google Scholar
  60. Le Goff, J., & Nora, P. (Eds.). (1985). Constructing the past: Essays in historical methodology. Cambridge: Cambridge University Press [This book presents a selection of ten of the most significant contributions to the three-volume Faire de l’histoire, 1974].Google Scholar
  61. Lechte, J. (2003). Key contemporary concepts. From abjection to zeno’s paradox. New York: SAGE.Google Scholar
  62. Manning, P. (2013). Big Data in History. Basingstoke UK: Palgrave Macmillan.Google Scholar
  63. Manning, P. (2015). A World-Historical Data Resource: The Need is Now. Journal of World-Historical Information 2–3/2:1–6.Google Scholar
  64. Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: MIT Press.zbMATHGoogle Scholar
  65. Momigliano, A. (1985). History between Medicine and Rhetoric. Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia. Serie III XV/3:767–780.Google Scholar
  66. Moretti, F. (2005). Graphs, maps, trees: Abstract models for literary history. New York: Verso.Google Scholar
  67. Nanetti, A. (2010). Il Codice Morosini: Il Mondo Visto da Venezia (1094–1433) [The Morosini codex: The world as seen from Venice (1094–1433)] (Vol. 4). Spoleto: Foundation CISAM.Google Scholar
  68. Nanetti, A., & Cheong, S. A. (2016). The world as seen from Venice (1205-1533) as a case study of scalable web-based automatic narratives for interactive global histories. The Asian Review of World Histories, 4(1), 3–34.  https://doi.org/10.12773/arwh.2016.4.1.003.CrossRefGoogle Scholar
  69. Nanetti, A., Cheong, S. A., & Filippov, M. (2013). Interactive global histories: For a new information environment to increase the understanding of historical processes. In 2013 culture and computing (pp. 104–110). Los Alamitos: IEEE Computer Society.Google Scholar
  70. Nanetti, A., Lin, C.-Y., & Cheong, S. A. (2016). Provenance and validation from the humanities to automatic acquisition of semantic knowledge and machine reading for news and historical sources indexing/summary. The Asian Review of World Histories, 4(1), 125–132.  https://doi.org/10.12773/arwh.2016.4.1.125.CrossRefGoogle Scholar
  71. Olstein, D. (2015). Thinking history globally. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  72. Online Catasto of Florence. (1969). In: D. Herlihy, C. Klapisch-Zuber, R. Burr Litchfield, A. Molho (Eds.), Brown University (pp. 1427–1429). Retrieved January 2, 2017, from http://cds.library.brown.edu/projects/catasto/overview.html.
  73. Orlandini, G. (1913). Origine del Teatro Malibran. La Casa dei Polo e la Corte del Milion. Venezia: Nozze Alverà-Trevisanato.Google Scholar
  74. Orlandini, G. (1926). Marco Polo e la sua famiglia. Archivio veneto-tridentino, 9–10, 1–68.Google Scholar
  75. Palmer, R. G., Arthur W. B., Holland J. H., LeBaron B., Tayler P. (1994). Artificial economic life: A simple model of a stock market, Physica D 75:264–274. Retrieved January 15, 2017, from https://www.phy.duke.edu/~palmer/papers/arob98.pdf.CrossRefGoogle Scholar
  76. Paolucci, M., & Picascia, S. (2011). Enhancing collective filtering with causal representation. In 2011 culture and computing (pp. 135–136). Los Alamitos: IEEE Computer Society.Google Scholar
  77. Pavlus, J. (2015). A new map traces the limits of computation. A major advance reveals deep connections between the classes of problems that computers can—and [yet?] can’t—possibly do. Quanta Magazine Retrieved from quantamagazine.org/20150929-edit-distance-computational-complexity.
  78. Pelagios. (2011–Present). Pelagios commons. Retrieved January 15, 2016, from http://commons.pelagios.org.
  79. Pessoa, Osvaldo Jr. (2001). Counterfactual histories: The beginning of quantum physics. Philosophy of Science 68, 519–530.CrossRefGoogle Scholar
  80. Popper, K. (1999). All life is problem solving. (P. Camiller, Trans.). New York: Routledge.Google Scholar
  81. Popper, K. (1994). Alles leben ist problemlösen. München: Piper Verlag.Google Scholar
  82. Progetto Cronache Veneziane e Ravennati. Fondazione Casa di Oriani. (2016). Retrieved January 15, 2016, from http://www.cronachevenezianeravennati.it.
  83. Radick, G. (2005). Other Histories, Other Biologies. In Anthony O’Hear (ed.), Philosophy, Biology, and Life. Cambridge: Cambridge University Press, 21--47.Google Scholar
  84. Reynolds, C. (1986). Boids [An artificial live program which simulates flocking birds in 2D]. Retrieved January 15, 2017, from http://www.red3d.com/cwr/boids.
  85. Richthofen, F. V. (1876). Über den Seeverkehr nach und von China im Altertum und Mittelalter. Verhandlungen der Gesellschaft für Erdkunde zu Berlin, 1876, 86–97.Google Scholar
  86. Richthofen, F. V. (1877). Über die zentralasiatischen Seidenstrassen bis zum 2. Jh. n. Chr. Verhandlungen der Gesellschaft für Erdkunde zu Berlin, 1877, 96–122.Google Scholar
  87. Richthofen, F. V. (1877–1912). China. Ergebnisse eigener Reisen und darauf gegründeter Studien (Vol. 5). Berlin: Reimer.Google Scholar
  88. Robertson, D. S. (1998). The new renaissance: Computers and the next level of civilization. Oxford: Oxford University Press.Google Scholar
  89. Robertson, D. S. (2003). Phase change: The computer revolution in science and mathematics. Oxford: Oxford University Press.Google Scholar
  90. Roland, B. (1972). Critical essays (R. Howard, Trans.). Evanston:Evanston Northwestern University Press.Google Scholar
  91. Roland, B. (1967). Le discours de l’histoire. Social Science Information, 6(4), 63–75.CrossRefGoogle Scholar
  92. Sanudo, M. (1879–1902). In R. Fulin, F. Stefani, N. Barozzi, G. Berchet, & M. Allegri (Eds.), Diarii (Vol. 58). Venezia: Stabilimento Visentini cav. Federico Editore.Google Scholar
  93. Schäfer, W. (2001). Global civilization and local cultures. A crude look at the whole. International Sociology, 16(3), 301–319 Also in Rethinking Civilizational Analysis, eds. Saïd Amir Arjomand and Edward A. Tiryakian, 71-86. London: SAGE Publications.CrossRefGoogle Scholar
  94. Schich, M., Song, C., Ahn, Y.-Y., Mirksky, A., Martino, M., Barabási, A.-L., & Helbing, D. (2014). A network framework of cultural history. Science, 345, 558–562.  https://doi.org/10.1126/science.1240064.CrossRefGoogle Scholar
  95. Seshat: Global History Databank. (2011–Present). The Evolution Institute. Retrieved January 15, 2016, from http://seshatdatabank.info.
  96. Shelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143–186.CrossRefGoogle Scholar
  97. Spiegel, G. M. 1997. The Past as Text. Baltimore and London: The Johns Hopkins University Press.Google Scholar
  98. Toynbee, A. J. (1934–1961). A study of history (Vol. 12). London: Oxford University Press.Google Scholar
  99. Trismegistos. (2004–Present). University of Leuven and University of Cologne. Retrieved January 15, 2016, from http://www.trismegistos.org.
  100. Turchin, P. (2003). Historical dynamics: Why states rise and fall. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  101. Turchin, P., & Nefedov, S. A. (2009). Secular cycles. Princeton, NJ: Princeton University Press.Google Scholar
  102. Vendrix, P. (1997). Cognitive sciences and historical sciences in music: Ways towards conciliation. In I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 64–74). Hove, UK: Psychology Press.Google Scholar
  103. Vlastos, G. (1983). The socratic elenchus. Oxford Studies in Ancient Philosophy, 1, 27–58.Google Scholar
  104. Wang, G. (2016). Heritage and history. In: Third Singapore heritage science conference, Nanyang Technoogical University, Singapore, 25 January 2016. Retrieved January 6, 2017, from youtube.com/watch?v=-0wXSnqcAlM&list=PLasWJveXPWTE02EHZ2zsxzPxU6m3-GQli&index=3.
  105. Waugh, D. C. (2007). Richthofen’s “Silk Roads”: Toward the archaeology of a concept’. The Silk Road, 5(1), 1–10.MathSciNetGoogle Scholar
  106. Williams, B. (2006). The sense of the past. Princeton, NJ: Princeton University Press.Google Scholar
  107. Wong, S. C., Miles, S., Fang, W., Groth, P., & Moreau, L. (2005). Provenance-based validation of E-science experiments. In: Y. Gil, M. Enrico, V. Richard Benjamins, & M. A. Musen (Eds.), The semantic web—ISWC 2005. Proceedings of the fourth international semantic web conference, Galway, Ireland, November 6–10, 2005 (pp 801–815). Berlin:Springer Verlag.CrossRefGoogle Scholar
  108. Woo, G. (2011). Calculating catastrophe. London: Imperial College Press.CrossRefGoogle Scholar
  109. Yule, H., & Cordier, H. (1913–1916). Cathay and the way thither (Vol. 4). London: The Hakluyt Society.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Art, Design and MediaNanyang Technological UniversitySingaporeRepublic of Singapore
  2. 2.School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations