Skip to main content

Face Recognition Analysis Using 3D Model

  • Conference paper
  • First Online:
  • 700 Accesses

Abstract

Facial Recognition is a commonly used technology in security-related applications. It has been thoroughly studied and scrutinized for its number of practical real-world applications. On the road ahead of understanding this technology, there remain several obstacles. In this paper, methods of 3D face recognition are examined by measuring quantifiable applications and results. In facial recognition, three Dimensional Morphable Model (3DMM) techniques have attracted more and more attention as effectiveness in use increases over time. 3DMM provides automation and more accurate image rendering when compared to other traditional techniques. The accuracy in image rendering comes at a cost; as 3DMM requires more focus on texture estimation, shape-controlling limits, and extrinsic variations, accurately matching fitting models, feature tracking and precision identification. We have underlined different issues in comparison based on these methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abiantun, R., Prabhu, U., Savvides, M.: Sparse feature extraction for pose-tolerant face recognition. IEEE Trans. Anal. Mach. Intell. 36(10), 2061–2073 (2014)

    Article  Google Scholar 

  2. Aldrian, O., Smith, W.A.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1080–1093 (2013)

    Article  Google Scholar 

  3. Amberg, B., Knothe, R., Vetter, T.: Expression invariant 3D face recognition with a morphable model. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  4. Ashburner, J., Friston, K.J.: Voxel-based morphometryłthe methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  5. Bartoli, A., Collins, T.: Template-based isometric deformable 3D reconstruction with sampling-based focal length self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1514–1521 (2013)

    Google Scholar 

  6. Bogo, F., Romero, J., Loper, M., Black, M.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)

    Google Scholar 

  7. Bolkart, T., Brunton, A., Salazar, A., Wuhrer, S.: Statistical 3D shape models of human faces (2013). http://statistical-face-models.mmci.uni-saarland.de

  8. Bolkart, T., Wuhrer, S.: A groupwise multilinear correspondence optimization for 3D faces. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3604–3612 (2015)

    Google Scholar 

  9. Bustard, J.D., Nixon, M.S.: 3D morphable model construction for robust ear and face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2582–2589. IEEE (2010)

    Google Scholar 

  10. Choi, I., Kim, D.: 3D face fitting using multi-stage parameter updating in the 3D morphable face model. In: Tenth IEEE International Symposium on Multimedia, ISM 2008, pp. 274–279. IEEE (2008)

    Google Scholar 

  11. Chu, B., Romdhani, S., Chen, L.: 3D-aided face recognition from videos. In: 2014 5th European Workshop on Visual Information Processing (EUVIP), pp. 1–6. IEEE (2014)

    Google Scholar 

  12. Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time facial feature detection using conditional regression forests. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2578–2585. IEEE (2012)

    Google Scholar 

  13. Dessein, A., Smith, W.A., Wilson, R.C., Hancock, E.R.: Example-based modeling of facial texture from deficient data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3898–3906 (2015)

    Google Scholar 

  14. Dikmen, M.: 3D face reconstruction using stereo vision. Ph.D. thesis, Middle East Technical University (2006)

    Google Scholar 

  15. Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)

    Article  Google Scholar 

  16. Ganar, A.N., Gode, C., Jambhulkar, S.M.: Enhancement of image retrieval by using colour, texture and shape features. In: 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC), pp. 251–255. IEEE (2014)

    Google Scholar 

  17. Gasparetto, A., Torsello, A.: A statistical model of Riemannian metric variation for deformable shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2015)

    Google Scholar 

  18. Groeber, M., Ghosh, S., Uchic, M.D., Dimiduk, D.M.: A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 1: statistical characterization. Acta Mater. 56(6), 1257–1273 (2008)

    Article  Google Scholar 

  19. Gruen, A., Akca, D.: Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 59(3), 151–174 (2005)

    Article  Google Scholar 

  20. Gu, Y., Cao, Z., Zhang, Y.: Three-dimensional reconstruction of multiplatform stereo data with variance component estimation. IEEE Trans. Geosci. Remote Sens. 52(7), 4211–4226 (2014)

    Article  Google Scholar 

  21. Guan, Y.: Automatic 3D face reconstruction based on single 2D image. In: International Conference on Multimedia and Ubiquitous Engineering, MUE 2007, pp. 1216–1219. IEEE (2007)

    Google Scholar 

  22. Hagihara, T., Hanawa, M.: Multivariate identification of low-loss sampled fiber bragg gratings by downhill simplex method. In: 2013 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 758–763. IEEE (2013)

    Google Scholar 

  23. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4295–4304 (2015)

    Google Scholar 

  24. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  25. Heo, J., Savvides, M.: In between 3D active appearance models and 3D morphable models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 20–26. IEEE (2009)

    Google Scholar 

  26. Khan, M.S., Ullah, Z., Jaffri, U.A.: A proposed (FRMS) 3D face reconstruction method from stereo images. In: Proceeding of the 9th International Conference on Computer and Automation Engineering, ICCAE 2017, 18–21 February 2017, Sydney, Australia, pp. 150–154 (2017)

    Google Scholar 

  27. Hu, G.: Face analysis using 3D morphable models. Ph.D. thesis, University of Surrey (2015)

    Google Scholar 

  28. Hu, G., Chan, C.H., Yan, F., Christmas, W., Kittler, J.: Robust face recognition by an albedo based 3D morphable model. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2014)

    Google Scholar 

  29. Hu, Y., Zheng, Y., Wang, Z.: Reconstruction of 3D face from a single 2D image for face recognition. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 217–222. IEEE (2005)

    Google Scholar 

  30. Huber, P., Feng, Z.-H., Christmas, W., Kittler, J., Ratsch, M.: Fitting 3D morphable face models using local features. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1195–1199. IEEE (2015)

    Google Scholar 

  31. Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R., Di Carlo, D.: Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11(5), 912–920 (2011)

    Article  Google Scholar 

  32. Kemelmacher-Shlizerman, I.: Internet based morphable model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3256–3263 (2013)

    Google Scholar 

  33. Kemelmacher-Shlizerman, I., Basri, R.: 3D face reconstruction from a single image using a single reference face shape. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 394–405 (2011)

    Article  Google Scholar 

  34. Kim, Y., Chung, S.-T., Kim, B., Cho, S.: 3D face modeling based on 3D dense morphable face shape model. Int. J. Comput. Sci. Eng. 2(3), 107–113 (2008)

    Google Scholar 

  35. Knothe, R., Romdhani, S., Vetter, T.: Combining PCA and LFA for surface reconstruction from a sparse set of control points. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 637–644. IEEE (2006)

    Google Scholar 

  36. Lee, T.-Y., Sum, Y.-N., Lin, Y.-C., Lin, L., Lee, C.: Three-dimensional facial model reconstruction and plastic surgery simulation. IEEE Trans. Inf. Technol. Biomed. 3(3), 214–220 (1999)

    Article  Google Scholar 

  37. Li, S., Liu, X., Chai, X., Zhang, H., Lao, S., Shan, S.: Morphable displacement field based image matching for face recognition across pose. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 102–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_8

    Chapter  Google Scholar 

  38. Lin, K., Wang, X., Li, X., Tan, Y.: Self-adaptive morphable model based multi-view non-cooperative 3D face reconstruction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 320–325. IEEE (2014)

    Google Scholar 

  39. Liu, Z., Zhang, Z., Jacobs, C., Cohen, M.: Rapid modelling of animated faces from video. J. Vis. Comput. Anim. 12(4), 227–240 (2001)

    Article  Google Scholar 

  40. Ming, Y., Ruan, Q., Li, X.: 3D face reconstruction using a single 2F face image. In: 2010 International Conference on Educational and Information Technology (ICEIT), vol. 3, pp. V3–V32. IEEE (2010)

    Google Scholar 

  41. Minoi, J.-L., Jupit, A.J.R., Gillies, D.F., Arnab, S.: Facial expressions reconstruction of 3D faces based on real human data. In: 2012 IEEE International Conference on Computational Intelligence and Cybernetics (CyberneticsCom), pp. 185–189. IEEE (2012)

    Google Scholar 

  42. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)

    Article  Google Scholar 

  43. Ngo, T.D., Park, S., Jorstad, A.A., Crivellaro, A., Yoo, C., Fua, P.: Dense image registration and deformable surface reconstruction in presence of occlusions and minimal texture. In: International Conference on Computer Vision, No. EPFL-CONF-211260 (2015)

    Google Scholar 

  44. Niinuma, K., Han, H., Jain, A.K.: Automatic multi-view face recognition via 3D model-based pose regularization. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)

    Google Scholar 

  45. Papazov, C., Marks, T.K., Jones, M.: Real-time 3D head pose and facial landmark estimation from depth images using triangular surface patch features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4722–4730 (2015)

    Google Scholar 

  46. Park, J.-H., Baasantseren, G., Kim, N., Park, G., Kang, J.-M., Lee, B.: View image generation in perspective and orthographic projection geometry based on integral imaging. Opt. Express 16(12), 8800–8813 (2008)

    Article  Google Scholar 

  47. Patel, A., Smith, W.A.: 3D morphable face models revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1327–1334. IEEE (2009)

    Google Scholar 

  48. Patel, A., Smith, W.A.: Simplification of 3D morphable models. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 271–278. IEEE (2011)

    Google Scholar 

  49. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Sixth IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2009, pp. 296–301. IEEE (2009)

    Google Scholar 

  50. Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2006)

    Google Scholar 

  51. Prabhu, U., Heo, J., Savvides, M.: Unconstrained pose-invariant face recognition using 3D generic elastic models. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1952–1961 (2011)

    Article  Google Scholar 

  52. Ullah, Z., Mumtaz, I., Khan, M.S.: Analysis of 3D face modeling. Int. J. Sig. Process. Image Process. Pattern Recogn. 8(11), 7–14 (2015)

    Google Scholar 

  53. Rekik, A., Ben-Hamadou, A., Mahdi. W.: 3D face pose tracking using low quality depth cameras. In: VISAPP (2), pp. 223–228 (2013)

    Google Scholar 

  54. Remondino, F., El-Hakim, S., Gruen, A., Zhang, L.: Turning images into 3D models. IEEE Sig. Process. Mag. 25(4), 55–65 (2008)

    Article  Google Scholar 

  55. Sagonas, C., Panagakis, Y., Zafeiriou, S., Pantic, M.: Robust statistical face frontalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3871–3879 (2015)

    Google Scholar 

  56. Santamaría, J., Cordon, O., Damas, S., Botella, M., et al.: 3D forensic model reconstruction by scatter search-based pair-wise image registration. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1086–1092. IEEE (2006)

    Google Scholar 

  57. Stylianou, G., Lanitis, A.: Image based 3D face reconstruction: a survey. Int. J. Image Graph. 9(02), 217–250 (2009)

    Article  Google Scholar 

  58. Suen, C.Y., Langaroudi, A.Z., Feng, C., Mao, Y.: A survey of techniques for face reconstruction. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC, pp. 3554–3560. IEEE (2007)

    Google Scholar 

  59. Tsalakanidou, F., Malassiotis, S., Strintzis, M.G.: Integration of 2D and 3D images for enhanced face authentication. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 266–271. IEEE (2004)

    Google Scholar 

  60. Tsiminaki, V., Franco, J.-S., Boyer, E.: High resolution 3D shape texture from multiple videos. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1502–1509. IEEE (2014)

    Google Scholar 

  61. Wang, L., Liu, B., Su, S., Cheng, Y., Li, S.: An improved 3D bilinear multidimensional morphable models used in 3D face recognition. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), vol. 3, pp. 2052–2056. IEEE (2014)

    Google Scholar 

  62. Werghi, N., Tortorici, C., Berretti, S., Del Bimbo, A.: Representing 3D texture on mesh manifolds for retrieval and recognition applications. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2521–2530. IEEE (2015)

    Google Scholar 

  63. Wold, H.: Partial least squares. In. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical Sciences. Wiley, New York (1985)

    Google Scholar 

  64. Xu, W., Salzmann, M., Wang, Y., Liu, Y.: Deformable 3D fusion: from partial dynamic 3D observations to complete 4D models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2183–2191 (2015)

    Google Scholar 

  65. Yoshiki, K., Saito, H., Mochimaru, M.: Reconstruction of 3D face model from single shading image based on anatomical database. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 350–353. IEEE (2006)

    Google Scholar 

  66. Yu, R., Russell, C., Campbell, N., Agapito, L.: Direct, dense, and deformable: template-based non-rigid 3D reconstruction from RGB video. In: IEEE International Conference on Computer Vision (ICCV 2016). University of Bath (2015)

    Google Scholar 

  67. Yumer, M.E., Chun, W., Makadia, A.: Co-segmentation of textured 3D shapes with sparse annotations. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 240–247. IEEE (2014)

    Google Scholar 

  68. Zhang, C., Chen, T.: Efficient feature extraction for 2D/3D objects in mesh representation. In: Proceedings of 2001 International Conference on Image Processing, vol. 3, pp. 935–938. IEEE (2001)

    Google Scholar 

  69. Zhu, X., Yan, J., Yi, D., Lei, Z., Li, S.Z.: Discriminative 3D morphable model fitting. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)

    Google Scholar 

  70. Zhu, Y., Zhang, Y., Bonev, B., Yuille, A.L.: Modelling deformable gradient compositions for single-image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5417–5425 (2015)

    Google Scholar 

Download references

Acknowledgement

The author is very grateful to everyone for their recommendations and guidance in research, and for their continuous support, motivation and immense knowledge. The author also thanks to colleagues and lab mates for stimulates discussions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.S., Jehanzeb, M., Babar, M.I., Faisal, S., Ullah, Z., Amin, S.Z.B.M. (2018). Face Recognition Analysis Using 3D Model. In: Miraz, M., Excell, P., Ware, A., Soomro, S., Ali, M. (eds) Emerging Technologies in Computing. iCETiC 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-95450-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95450-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95449-3

  • Online ISBN: 978-3-319-95450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics