Skip to main content

Selenium and Neurodevelopment

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1503 Accesses

Abstract

Brain is a privileged organ regarding selenium accumulation and metabolism. The discovery of a neurological phenotype in selenoprotein P knockout mouse provided a new perspective on the function of selenoproteins in brain. Since then, genetic studies in mice have revealed that some selenoproteins are indispensable to normal brain function. Neurodegeneration of GABAergic interneurons (PV+ neurons and Purkinje cells in cerebellum) was observed in Trsp and Secisbp2 knockout mice. Gpx4 knockout mice showed a similar phenotype, which could indicate that Gpx4 is necessary for maintenance or development of GABAergic interneurons. Similarly, SelT has a protective role for dopaminergic neurons and Txnrd1 is involved in radial glia development.

Progress of genome sequencing methods allowed to uncover inborn errors in selenoproteins or their biosynthetic factors, which lead to developmental and degenerative diseases in humans. Thus, mutations in SEPSECS gene lead to pontocerebellar hypoplasia type 2D, a neurodegenerative disease. Sedaghatian disease is caused by GPX4 mutations. Some of these patients show malformations of the central nervous system. A homozygous mutation in the TXNRD1 causes generalized epilepsy. Hearing loss and impaired movement coordination were symptoms found in patients suffering from SECISBP2 syndrome.

This chapter highlights neurological diseases and phenotypes detected in mouse and patients with impaired selenoprotein expression in the brain. Similarities and differences between mouse models and human disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamy O, et al. Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet. 2010;87:538–44.

    Article  CAS  Google Scholar 

  • Amoros R, et al. Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Sci Total Environ. 2018;610–611:741–9.

    Article  Google Scholar 

  • Anttonen AK, et al. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology. 2015;85:306–15.

    Article  CAS  Google Scholar 

  • Aygun C, et al. Simplified gyral pattern with cerebellar hypoplasia in Sedaghatian type spondylometaphyseal dysplasia: a clinical report and review of the literature. Am J Med Genet A. 2012;158A:1400–5.

    Article  Google Scholar 

  • Azevedo MF, et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab. 2010;95:4066–71.

    Article  CAS  Google Scholar 

  • Berr C, Arnaud J, Akbaraly TN. Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors. 2012;38:139–44.

    Article  CAS  Google Scholar 

  • Boukhzar L, et al. Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson’s disease. Antioxid Redox Signal. 2016;24:557–74.

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE. Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta. 2009;1790:1441–7.

    Article  CAS  Google Scholar 

  • Burk RF, et al. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci. 2007;27:6207–11.

    Article  CAS  Google Scholar 

  • Burk RF, et al. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014;28:3579–88.

    Article  CAS  Google Scholar 

  • Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem. 2014;289:9662–74.

    Article  CAS  Google Scholar 

  • Carlson BA, Yoo MH, Tsuji PA, Gladyshev VN, Hatfield DL. Mouse models targeting selenocysteine tRNA expression for elucidating the role of selenoproteins in health and development. Molecules. 2009a;14:3509–27.

    Article  CAS  Google Scholar 

  • Carlson BA, et al. The selenocysteine tRNA STAF-binding region is essential for adequate selenocysteine tRNA status, selenoprotein expression and early age survival of mice. Biochem J. 2009b;418:61–71.

    Article  CAS  Google Scholar 

  • Chen L, Hambright WS, Na R, Ran Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem. 2015;290:28097–106.

    Article  CAS  Google Scholar 

  • Chiu-Ugalde J, et al. Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem J. 2010;431:103–11.

    Article  CAS  Google Scholar 

  • Conrad M, et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol. 2004;24:9414–23.

    Article  CAS  Google Scholar 

  • Di Cosmo C, et al. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J Clin Endocrinol Metab. 2009;94:4003–9.

    Article  Google Scholar 

  • Dominiak A, Wilkaniec A, Wroczynski P, Adamczyk A. Selenium in the therapy of neurological diseases. Where is it Going? Curr Neuropharmacol. 2016;14:282–99.

    Article  CAS  Google Scholar 

  • Dumitrescu AM, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37:1247–52.

    Article  CAS  Google Scholar 

  • Fradejas N, Serrano-Perez Mdel C, Tranque P, Calvo S. Selenoprotein S expression in reactive astrocytes following brain injury. Glia. 2011;59:959–72.

    Article  Google Scholar 

  • Friedmann Angeli JP, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  Google Scholar 

  • Fu J, Fujisawa H, Follman B, Liao XH, Dumitrescu AM. Thyroid hormone metabolism defects in a mouse model of SBP2 deficiency. Endocrinology. 2017;158(12):4317–30.

    Article  Google Scholar 

  • Gao S, et al. Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol. 2007;165:955–65.

    Article  Google Scholar 

  • Gladyshev VN, et al. Selenoprotein Gene Nomenclature. J Biol Chem. 2016;291:24036–40.

    Article  CAS  Google Scholar 

  • Hamajima T, Mushimoto Y, Kobayashi H, Saito Y, Onigata K. Novel compound heterozygous mutations in the SBP2 gene: characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur J Endocrinol. 2012;166:757–64.

    Article  CAS  Google Scholar 

  • Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17.

    Article  CAS  Google Scholar 

  • Hill KE, et al. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem. 2003;278:13640–6.

    Article  CAS  Google Scholar 

  • Hill KE, Zhou J, McMahan WJ, Motley AK, Burk RF. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J Nutr. 2004;134:157–61.

    Article  CAS  Google Scholar 

  • Hill KE, et al. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem. 2007;282:10972–80.

    Article  CAS  Google Scholar 

  • Hill KE, et al. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem. 2012;287:40414–24.

    Article  CAS  Google Scholar 

  • Holzerova E, et al. Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration. Brain. 2016;139:346–54.

    Article  Google Scholar 

  • Iwama K, et al. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. J Hum Genet. 2016;61:527–31.

    Article  CAS  Google Scholar 

  • Jakupoglu C, et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol. 2005;25:1980–8.

    Article  CAS  Google Scholar 

  • Kiermayer C, Michalke B, Schmidt J, Brielmeier M. Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice. Biol Chem. 2007;388:1091–7.

    Article  CAS  Google Scholar 

  • Krol MB, Gromadzinska J, Wasowicz W. SeP, ApoER2 and megalin as necessary factors to maintain Se homeostasis in mammals. J Trace Elem Med Biol. 2012;26:262–6.

    Article  CAS  Google Scholar 

  • Kudin AP, et al. Homozygous mutation in TXNRD1 is associated with genetic generalized epilepsy. Free Radic Biol Med. 2017;106:270–7.

    Article  CAS  Google Scholar 

  • Kuhbacher M, et al. The brain selenoproteome: priorities in the hierarchy and different levels of selenium homeostasis in the brain of selenium-deficient rats. J Neurochem. 2009;110:133–42.

    Article  Google Scholar 

  • Kurokawa S, Hill KE, McDonald WH, Burk RF. Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem. 2012;287:28717–26.

    Article  CAS  Google Scholar 

  • Kurokawa S, et al. Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic Biol Med. 2014;69:67–76.

    Article  CAS  Google Scholar 

  • Mendoza A, Hollenberg AN. New insights into thyroid hormone action. Pharmacol Ther. 2017;173:135–45.

    Article  CAS  Google Scholar 

  • Ng L, et al. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A. 2004;101:3474–9.

    Article  CAS  Google Scholar 

  • Ng L, et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology. 2009;150:1952–60.

    Article  CAS  Google Scholar 

  • Ng L, et al. Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci. 2010;30:3347–57.

    Article  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem. 2007;282:12290–7.

    Article  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Hill KE, Burk RF. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem. 2008;283:6854–60.

    Article  CAS  Google Scholar 

  • Pavlidou E, et al. Pontocerebellar hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency. Eur J Paediatr Neurol. 2016;20:483–8.

    Article  Google Scholar 

  • Pitts MW, et al. Competition between the brain and testes under selenium-compromised conditions: insight into sex differences in selenium metabolism and risk of neurodevelopmental disease. J Neurosci. 2015;35:15326–38.

    Article  CAS  Google Scholar 

  • Prasad R, et al. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014;99:E1556–63.

    Article  CAS  Google Scholar 

  • Prevost G, et al. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology. 2013;154:3796–806.

    Article  CAS  Google Scholar 

  • Ramaekers VT, Calomme M, Vanden Berghe D, Makropoulos W. Selenium deficiency triggering intractable seizures. Neuropediatrics. 1994;25:217–23.

    Article  CAS  Google Scholar 

  • Raman AV, et al. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes Brain Behav. 2012;11:601–13.

    Article  CAS  Google Scholar 

  • Renko K, et al. Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem J. 2008;409:741–9.

    Article  CAS  Google Scholar 

  • Schneider MJ, et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol. 2001;15:2137–48.

    Article  CAS  Google Scholar 

  • Schneider MJ, et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology. 2006;147:580–9.

    Article  CAS  Google Scholar 

  • Schoenmakers E, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120:4220–35.

    Article  CAS  Google Scholar 

  • Schoenmakers E, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016;126:992–6.

    Article  Google Scholar 

  • Schomburg L, et al. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J. 2003;370:397–402.

    Article  CAS  Google Scholar 

  • Schriever SC, et al. Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience. 2017;357:241–54.

    Article  CAS  Google Scholar 

  • Schweizer U, Fradejas-Villar N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J. 2016;30:3669–81.

    Article  CAS  Google Scholar 

  • Schweizer U, Schomburg L. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium: its molecular biology and role in human health. Boston, MA: Springer US; 2006. p. 233–48.

    Chapter  Google Scholar 

  • Schweizer U, et al. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J. 2005;386:221–6.

    Article  CAS  Google Scholar 

  • Sedaghatian MR. Congenital lethal metaphyseal chondrodysplasia: a newly recognized complex autosomal recessive disorder. Am J Med Genet. 1980;6:269–74.

    Article  CAS  Google Scholar 

  • Seeher S, et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression. Antioxid Redox Signal. 2014a;21:835–49.

    Article  CAS  Google Scholar 

  • Seeher S, et al. Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to co-ordination defects in mice. Biochem J. 2014b;462:67–75.

    Article  CAS  Google Scholar 

  • Seiler A, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–48.

    Article  CAS  Google Scholar 

  • Shahar A, et al. Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord. 2010;25:1909–15.

    Article  Google Scholar 

  • Shetty S, Marsicano JR, Copeland PR. Uptake and utilization of selenium from selenoprotein P. Biol Trace Elem Res. 2018;181:54–61.

    Article  CAS  Google Scholar 

  • Sibbing D, et al. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J. 2011;32:1121–33.

    Article  CAS  Google Scholar 

  • Smith AC, et al. Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia. J Med Genet. 2014;51:470–4.

    Article  CAS  Google Scholar 

  • Soerensen J, et al. The role of thioredoxin reductases in brain development. PLoS One. 2008;3:e1813.

    Article  Google Scholar 

  • Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys. 2013;536:152–7.

    Article  CAS  Google Scholar 

  • Ueta T, et al. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J Biol Chem. 2012;287:7675–82.

    Article  CAS  Google Scholar 

  • Valentine WM, et al. Brainstem axonal degeneration in mice with deletion of selenoprotein p. Toxicol Pathol. 2005;33:570–6.

    Article  CAS  Google Scholar 

  • Vanderpas JB, et al. Iodine and selenium deficiency associated with cretinism in northern Zaire. Am J Clin Nutr. 1990;52:1087–93.

    Article  CAS  Google Scholar 

  • de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW. Lower brain and blood nutrient status in Alzheimer’s disease: results from meta-analyses. Alzheimers Dement (N Y). 2017;3:416–31.

    Google Scholar 

  • Wirth EK, et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 2010;24:844–52.

    Article  CAS  Google Scholar 

  • Wirth EK, et al. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol Trace Elem Res. 2014;158:203–10.

    Article  CAS  Google Scholar 

  • Wrobel JK, Power R, Toborek M. Biological activity of selenium: revisited. IUBMB Life. 2016;68:97–105.

    Article  CAS  Google Scholar 

  • Yagishita Y, et al. Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress. Cell Rep. 2017;18:2030–44.

    Article  CAS  Google Scholar 

  • Yant LJ, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med. 2003;34:496–502.

    Article  CAS  Google Scholar 

  • Yoo SE, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med. 2012;52:1820–7.

    Article  CAS  Google Scholar 

  • Zhang Y, et al. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem. 2008;283:2427–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schweizer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fradejas-Villar, N., Schweizer, U. (2018). Selenium and Neurodevelopment. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_9

Download citation

Publish with us

Policies and ethics