Ahmed HH, Abd El-Maksoud MD, Abdel Moneim AE, Aglan HA. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol Trace Elem Res. 2017;177(2):267–80.
CAS
CrossRef
Google Scholar
Ahonen M, Kahru A, Ivask A, Kasemets K, Kõljalg S, Mantecca P, Vinković Vrček I, Keinänen-Toivola M, Crijns F. Proactive approach for safe use of antimicrobial coatings in healthcare settings: opinion of the COST action network AMiCI. Int J Environ Res Public Health. 2017;14:366–89.
CrossRef
Google Scholar
Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci Rep. 2016;15(6):37155.
CrossRef
Google Scholar
Bartůněk V, Junková J, Šuman J, Kolářová K, Rimpelová S, Ulbrich P, Sofer Z. Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20. Mater Lett. 2015;152:207–9.
CrossRef
Google Scholar
Beladi M, Sepahi AA, Mehrabian S, Esmaeili A, Sharifnia F. Antibacterial activities of selenium and selenium nano-particles (products from Lactobacillus acidophilus) on nosocomial strains resistant to antibiotics. J Pure App Microbiol. 2015;9(4):2843–51.
Google Scholar
Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;136:1–51.
CrossRef
Google Scholar
Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci. 2015;178:330–6.
CrossRef
Google Scholar
Buchs B, Evangelou MW, Winkel LH, Lenz M. Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol. 2013;47:2401–7.
CAS
CrossRef
Google Scholar
Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci. 2012;91(10):2532–9.
CAS
CrossRef
Google Scholar
Cavalu S, Prokisch J, Laslo V, Vicas S. Preparation, structural characterisation and release study of novel hybrid microspheres entrapping nanoselenium, produced by green synthesis. IET Nanobiotechnol. 2017;11(4):426–32.
CrossRef
Google Scholar
Chen Q, Yu Q, Liu Y, Bhavsar D, Yang L, Ren X, Sun D, Zheng W, Liu J, Chen LM. Multifunctional selenium nanoparticles: chiral selectivity of delivering MDR–siRNA for reversal of multidrug resistance and real-time biofluorescence imaging. Nanomedicine. 2015;11(7):1773–84.
CAS
CrossRef
Google Scholar
Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MA, Tmejova K, Kopel P, Nejdl L, Kudr J, Gumulec J, Krizkova S, Kynicky J, Kizek R, Adam V. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014;351(2):195–201.
CAS
CrossRef
Google Scholar
Cihalova K, Chudobova D, Michalek P, Moulick A, Guran R, Kopel P, Adam V, Kizek R. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. Int J Mol Sci. 2015;16(10):24656–72.
CAS
CrossRef
Google Scholar
Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. J Microbial Biotechnol. 2016;9(6):758–71.
CAS
CrossRef
Google Scholar
Dehkordi A, Jafari Mohebbi AN, Aslani MR, Ghoreyshi SM. Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Hum Exp Toxicol. 2017;36(4):421–7.
CAS
CrossRef
Google Scholar
Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003–37.
CAS
CrossRef
Google Scholar
Dobias J, Suvorova EI, Bernier-Latmani R. Role of proteins in controlling selenium nanoparticle size. Nanotechnology. 2011;22(19):195605.
CAS
CrossRef
Google Scholar
EC (European Commission). Commission of the European Communities. 2 February 2000 Communication from the Commission on the Precautionary Principle. 2000.
Google Scholar
EC (European Commission). 2017.; http://cordis.europa.eu/nanotechnology/actionplan.htm. Accessed 5 Oct 2017.
El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M. Selenium and nano-selenium in agroecosystems. Environ Chem Lett. 2014;12(4):495–510.
CAS
CrossRef
Google Scholar
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003;3(4):655–63.
CAS
CrossRef
Google Scholar
Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K, Handzlik J, Jacob C. Natural selenium particles from Staphylococcus carnosus: hazards or particles with particular promise? J Hazard Mater. 2017;324(Pt A):22–30.
CAS
CrossRef
Google Scholar
Eswarapriya B, Jegatheesan K. Antifungal activity of biogenic selenium nanoparticles. Synthesized from Electronic Waste. Int J PharmTech Res. 2015;8(3):383–6.
CAS
Google Scholar
Eszenyi P, Sztrik A, Babka B, Prokisch J. Production of Lactomicrosel (R) and nanosize (100-500 NM) selenium spheres by probiotic lactic acid bacteria. In: Food Engineering and Biotechnology. Edited by Wu KJ. 2011;9:97-101.
Google Scholar
Fahmy HA, Azim AS, Gharib OA. Protective effects of omega-3 fatty acids and/or nano- selenium on cisplatin and ionizing radiation induced liver toxicity in rats. Indian J Pharm Educ Res. 2016;50(4):649–56.
CAS
CrossRef
Google Scholar
Ferrari M, Ravera F, Rao S, Liggieri L. Surfactant adsorption at superhydrophobic surfaces. Appl Phys Lett. 2006;89:053104.
CrossRef
Google Scholar
Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, Shakibaie M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol. 2014;28(1):75–9.
CAS
CrossRef
Google Scholar
Gao XY, Zhang JS, Zhang LD, Zhu MX. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice. China Public Health. 2000;16:42.
Google Scholar
Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials. 2014a;35(31):8854–66.
CAS
CrossRef
Google Scholar
Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections: nanoparticle against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014b;6(6):532–47.
CAS
CrossRef
Google Scholar
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.
CAS
CrossRef
Google Scholar
Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4:273–83.
CrossRef
Google Scholar
Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol. 2012;177(3-4):204–10.
CAS
CrossRef
Google Scholar
Huang B, Zhang JS, Hou JW, Chen C. Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med. 2003;35(7):805–13.
CAS
CrossRef
Google Scholar
Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106–16.
CAS
CrossRef
Google Scholar
Husen A, Siddiqi KS. Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechology. 2014;12:28.
CrossRef
Google Scholar
Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional chnanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.
CAS
CrossRef
Google Scholar
Jiang F, Cai W, Tan G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res Lett. 2017;12:401.
CrossRef
Google Scholar
Kamnev AA, Manchenkova PV, Yu A, Dyatlova AV, Tugarova AV. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struct. 2017;1140:106–12.
CAS
CrossRef
Google Scholar
Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol. 2014;5:159.
PubMed
PubMed Central
Google Scholar
Kapur M, Soni K, Kohli K. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv Tech Biol Med. 2017;5:198.
CrossRef
Google Scholar
Kazlev AM. History of nanotechnology. 1998. http://www.kheper.net/topics/nanotech/nanotech- history.htm. Accessed 25 Nov 2017.
Klaine S, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, von der Kammer F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem. 2012;31:3–14.
CAS
CrossRef
Google Scholar
Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155–62.
CAS
CrossRef
Google Scholar
Kora AJ, Rastogi L. Bacteriogenic synthesis of selenium nanoparticles by Escherichia coli ATCC 35218 and its structural characterisation. IET Nanobiotechnol. 2017;11(2):179–84.
CrossRef
Google Scholar
Kumar A, Beni YA, Parang K. Cyclic peptide – selenium nanoparticles as drug transporters. Mol Pharm. 2014;11:3631–41.
CrossRef
Google Scholar
Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89:251–6.
CAS
CrossRef
Google Scholar
Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano. 2012;6:6578–91.
CAS
CrossRef
Google Scholar
Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine. 2015;11(4):947–58.
CAS
CrossRef
Google Scholar
Loeschner K, Hadrup N, Hansen M, Pereira SA, Gammelgaard B, Møller LH, Mortensen A, Lam HR, Larsen EH. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics. 2014;6(2):330–7.
CAS
CrossRef
Google Scholar
Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond). 2017;12(9):1075–89.
CAS
CrossRef
Google Scholar
Mal J, Veneman WJ, Nancharaiah JV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerrio) embryogenesis. Nanotoxicology 2017;11(1):87–97.
CAS
CrossRef
Google Scholar
Mal J, Veneman WJ, Nancharaiah YV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2016;11(1):87–97.
CrossRef
Google Scholar
Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2(145):1–8.
Google Scholar
Micheletti C, Roman M, Tedesco E, Olivato I, Benetti F. Implementation of the NANoREG safe-by-design approach for different nanomaterial applications. J Phys Conf Ser. 2017;838:012019.
CrossRef
Google Scholar
Nancharaiah YV, Lens PNL. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015;33:323–30.
CAS
CrossRef
Google Scholar
Nasirpour M, Sadeghi AA, Chamani M. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobolins in male rats exposed to oxidative stress. J Livestock Sci. 2017;8:81–7.
Google Scholar
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42(3):1147–235.
CAS
CrossRef
Google Scholar
Nowack B, Ranville JF, Diamond S, Alberto Gallego-Urrea A, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2011;31:50–9.
CrossRef
Google Scholar
Panahi-Kalamuei M, Salavati-Niasari M, Hosseinpour-Mashkani SM. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. J Alloy Compd. 2014;617:627–32.
CAS
CrossRef
Google Scholar
Parnham MJ, Graf E. Pharmacology of synthetic organic selenium compounds. Prog Drug Res. 1991;36:9–47.
CAS
PubMed
Google Scholar
Paul S, Chugh A. Assessing the role of Ayurvedic ‘Bhasmas’ as Ethno- nanomedicine in the metal based nanomedicine patent regime. J Intellect Pro Rig. 2011;16:509–15.
Google Scholar
Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res. 2014;157(3):275–83.
CAS
CrossRef
Google Scholar
Prasad KS, Patel H, Patel T, Patel K, Selvaraj K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces. 2013;103:261–6.
CAS
CrossRef
Google Scholar
Ramamurthy C, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2013;36(8):1131–9.
CAS
CrossRef
Google Scholar
Renwick MJ, Brogan DM, Mossialos E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot (Tokyo). 2016;69(2):73–88.
CAS
CrossRef
Google Scholar
Richards DG, McMillin DL, Mein EA, Nelson CD. Gold and its relationship to neurological/glandular conditions. Int J Neurosci. 2002;112:31–53.
CrossRef
Google Scholar
Rösslein M, Liptrott N, Owen A, Boisseau P, Wick P, Herrmann IK. Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology. 2017;11(2):147–9.
CrossRef
Google Scholar
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci. 2012;13(8):9649–72.
CrossRef
Google Scholar
Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A. Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol. 2014;14(1):990–1006.
CAS
CrossRef
Google Scholar
Shahbazi B, Taghipour M, Rahmani H, Sadrjavadi K, Fattahi A. Preparation and characterization of silk fibroin/oligochitosan nanoparticles for siRNA delivery. Colloids Surf B Biointerfaces. 2015;136:867–77.
CAS
CrossRef
Google Scholar
Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41.
CAS
CrossRef
Google Scholar
Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam JS, Lee SS. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules. 2014;19(3):2761–70.
CrossRef
Google Scholar
Shoeibi S, Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol. 2017;39:135–9.
CAS
CrossRef
Google Scholar
Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Perspective of selenium nanoparticles as a nutrition supplement. Nutrition. 2017;33:83–90.
CAS
CrossRef
Google Scholar
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82.
CAS
CrossRef
Google Scholar
Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013;244:26–9.
CAS
CrossRef
Google Scholar
Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng. 2015;38(9):1723–30.
CAS
CrossRef
Google Scholar
Tan L, Jia X, Jiang X, Zhang Y, Tang H, Yao S, Xie Q. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron. 2009;24(7):2268–72.
CAS
CrossRef
Google Scholar
Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010;5:213–30.
CAS
CrossRef
Google Scholar
Tinggi U. Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett. 2003;137:103–10.
CAS
CrossRef
Google Scholar
Tor Y, Fair R. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:25–64.
PubMed
PubMed Central
Google Scholar
Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine. 2011;6:1553–8.
CAS
PubMed
PubMed Central
Google Scholar
Ungvári É, Monori I, Megyeri A, Csiki Z, Prokisch J, Sztrik A, Jávor A, Benkő I. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food Chem Toxicol. 2014;64:298–306.
CrossRef
Google Scholar
Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.
CAS
CrossRef
Google Scholar
Wang J, Zhang Y, Yuan Y, Yue T. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem Toxicol. 2014;68:183–9.
CAS
CrossRef
Google Scholar
Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev. 2013;42(23):8870–94.
CAS
CrossRef
Google Scholar
Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B. 2011;176:1409–21.
CAS
CrossRef
Google Scholar
Xi GC, Xiong K, Zhao QB, Zhang R, Zhang HB, Qian YT. Nucleation-dissolution-recrystallization: a new growth mechanism for t-selenium nanotubes. Cryst Growth Des. 2006;6(2):577–82.
CAS
CrossRef
Google Scholar
Xiao X, Zhao C, Yang S, Guo S. Characteristics of nano-selenium synthesized by Se(IV) adsorption and reduction with anoxygenic photosynthetic bacteria. Digest J Nanomat Biostruct. 2017;12(1):205–14.
Google Scholar
Xu H, Cao W, Zhang X. Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res. 2013;46(7):1647–58.
CAS
CrossRef
Google Scholar
Xu Q, He C, Xiao C, Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci. 2016;16(5):635–46.
CAS
CrossRef
Google Scholar
Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:428–45.
CAS
CrossRef
Google Scholar
Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine. 2012;7:835–44.
CAS
CrossRef
Google Scholar
Yu B, Li XL, Zheng WJ, Feng YX, Wong YS, Chen TF. pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects. J Mater Chem B. 2014;2(33):5409–18.
CAS
CrossRef
Google Scholar
Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88(1):196–201.
CAS
CrossRef
Google Scholar
Zheng Y, Chen T. Targeting nanomaterials: future drugs for cancer chemotherapy. Int J Nanomedicine. 2012;7:3939–49.
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater. 2015;11:368–80.
CAS
CrossRef
Google Scholar
Zheng W, Yin T, Chen Q, Qin X, Huang X, Zhao S, Xu T, Chen L, Liu J. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta Biomater. 2016;31:197–210.
CAS
CrossRef
Google Scholar
Zhou W, Wang L, Li F, Zhang W, Huang W, Huo F, Xu H. Selenium-containing polymer@metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system. Adv Funct Mater. 2017;27:1605465.
CrossRef
Google Scholar