Skip to main content
View expanded cover

Selenium pp 393–412Cite as

Selenium Nanoparticles: Biomedical Applications

Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Nanotechnology has introduced nanoparticulate form of selenium for a wide variety of applications. Due to exceptional catalytic, photoreactive, biocidal, anticancer, and antioxidant properties, selenium nanoparticles (SeNPs) attract considerable interest for use in antimicrobial coatings, nutritional supplements, nanotherapeutics, diagnostics, and medical devices, as well as in other applications such as rectifiers, photocopiers, xerography, and solar cells. Preparation and synthesis of SeNPs may be conducted following different physical, chemical, or biological techniques. Depending on the selected synthetic route, physicochemical properties of final SeNPs can be controlled by careful setup of experimental conditions including reactant concentrations, reaction temperature and pH, time for preparation, addition of catalysts, coating agent for surface stabilization, etc. Any application of SeNPs should be ascertained by the risk versus benefit ratio profiling. Implementation of safe-by-design concept, which is designed to ensure safety for humans and the environment, would help in timely identification of all risks related to the innovation processes and value chain of SeNPs.

Keywords

  • Nanoparticles
  • Synthesis
  • Anticancer
  • Drug resistance
  • Antimicrobial
  • Antioxidant
  • Safe-by-design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95390-8_21
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95390-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2
Fig. 21.3
Fig. 21.4

References

  • Ahmed HH, Abd El-Maksoud MD, Abdel Moneim AE, Aglan HA. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol Trace Elem Res. 2017;177(2):267–80.

    CAS  CrossRef  Google Scholar 

  • Ahonen M, Kahru A, Ivask A, Kasemets K, Kõljalg S, Mantecca P, Vinković Vrček I, Keinänen-Toivola M, Crijns F. Proactive approach for safe use of antimicrobial coatings in healthcare settings: opinion of the COST action network AMiCI. Int J Environ Res Public Health. 2017;14:366–89.

    CrossRef  Google Scholar 

  • Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci Rep. 2016;15(6):37155.

    CrossRef  Google Scholar 

  • Bartůněk V, Junková J, Šuman J, Kolářová K, Rimpelová S, Ulbrich P, Sofer Z. Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20. Mater Lett. 2015;152:207–9.

    CrossRef  Google Scholar 

  • Beladi M, Sepahi AA, Mehrabian S, Esmaeili A, Sharifnia F. Antibacterial activities of selenium and selenium nano-particles (products from Lactobacillus acidophilus) on nosocomial strains resistant to antibiotics. J Pure App Microbiol. 2015;9(4):2843–51.

    Google Scholar 

  • Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;136:1–51.

    CrossRef  Google Scholar 

  • Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci. 2015;178:330–6.

    CrossRef  Google Scholar 

  • Buchs B, Evangelou MW, Winkel LH, Lenz M. Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol. 2013;47:2401–7.

    CAS  CrossRef  Google Scholar 

  • Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci. 2012;91(10):2532–9.

    CAS  CrossRef  Google Scholar 

  • Cavalu S, Prokisch J, Laslo V, Vicas S. Preparation, structural characterisation and release study of novel hybrid microspheres entrapping nanoselenium, produced by green synthesis. IET Nanobiotechnol. 2017;11(4):426–32.

    CrossRef  Google Scholar 

  • Chen Q, Yu Q, Liu Y, Bhavsar D, Yang L, Ren X, Sun D, Zheng W, Liu J, Chen LM. Multifunctional selenium nanoparticles: chiral selectivity of delivering MDR–siRNA for reversal of multidrug resistance and real-time biofluorescence imaging. Nanomedicine. 2015;11(7):1773–84.

    CAS  CrossRef  Google Scholar 

  • Chudobova D, Cihalova K, Dostalova S, Ruttkay-Nedecky B, Rodrigo MA, Tmejova K, Kopel P, Nejdl L, Kudr J, Gumulec J, Krizkova S, Kynicky J, Kizek R, Adam V. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett. 2014;351(2):195–201.

    CAS  CrossRef  Google Scholar 

  • Cihalova K, Chudobova D, Michalek P, Moulick A, Guran R, Kopel P, Adam V, Kizek R. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. Int J Mol Sci. 2015;16(10):24656–72.

    CAS  CrossRef  Google Scholar 

  • Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. J Microbial Biotechnol. 2016;9(6):758–71.

    CAS  CrossRef  Google Scholar 

  • Dehkordi A, Jafari Mohebbi AN, Aslani MR, Ghoreyshi SM. Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Hum Exp Toxicol. 2017;36(4):421–7.

    CAS  CrossRef  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5(127):105003–37.

    CAS  CrossRef  Google Scholar 

  • Dobias J, Suvorova EI, Bernier-Latmani R. Role of proteins in controlling selenium nanoparticle size. Nanotechnology. 2011;22(19):195605.

    CAS  CrossRef  Google Scholar 

  • EC (European Commission). Commission of the European Communities. 2 February 2000 Communication from the Commission on the Precautionary Principle. 2000.

    Google Scholar 

  • EC (European Commission). 2017.; http://cordis.europa.eu/nanotechnology/actionplan.htm. Accessed 5 Oct 2017.

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M. Selenium and nano-selenium in agroecosystems. Environ Chem Lett. 2014;12(4):495–510.

    CAS  CrossRef  Google Scholar 

  • Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther. 2003;3(4):655–63.

    CAS  CrossRef  Google Scholar 

  • Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K, Handzlik J, Jacob C. Natural selenium particles from Staphylococcus carnosus: hazards or particles with particular promise? J Hazard Mater. 2017;324(Pt A):22–30.

    CAS  CrossRef  Google Scholar 

  • Eswarapriya B, Jegatheesan K. Antifungal activity of biogenic selenium nanoparticles. Synthesized from Electronic Waste. Int J PharmTech Res. 2015;8(3):383–6.

    CAS  Google Scholar 

  • Eszenyi P, Sztrik A, Babka B, Prokisch J. Production of Lactomicrosel (R) and nanosize (100-500 NM) selenium spheres by probiotic lactic acid bacteria. In: Food Engineering and Biotechnology. Edited by Wu KJ. 2011;9:97-101.

    Google Scholar 

  • Fahmy HA, Azim AS, Gharib OA. Protective effects of omega-3 fatty acids and/or nano- selenium on cisplatin and ionizing radiation induced liver toxicity in rats. Indian J Pharm Educ Res. 2016;50(4):649–56.

    CAS  CrossRef  Google Scholar 

  • Ferrari M, Ravera F, Rao S, Liggieri L. Surfactant adsorption at superhydrophobic surfaces. Appl Phys Lett. 2006;89:053104.

    CrossRef  Google Scholar 

  • Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, Shakibaie M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol. 2014;28(1):75–9.

    CAS  CrossRef  Google Scholar 

  • Gao XY, Zhang JS, Zhang LD, Zhu MX. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice. China Public Health. 2000;16:42.

    Google Scholar 

  • Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials. 2014a;35(31):8854–66.

    CAS  CrossRef  Google Scholar 

  • Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections: nanoparticle against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014b;6(6):532–47.

    CAS  CrossRef  Google Scholar 

  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    CAS  CrossRef  Google Scholar 

  • Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4:273–83.

    CrossRef  Google Scholar 

  • Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol. 2012;177(3-4):204–10.

    CAS  CrossRef  Google Scholar 

  • Huang B, Zhang JS, Hou JW, Chen C. Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med. 2003;35(7):805–13.

    CAS  CrossRef  Google Scholar 

  • Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106–16.

    CAS  CrossRef  Google Scholar 

  • Husen A, Siddiqi KS. Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechology. 2014;12:28.

    CrossRef  Google Scholar 

  • Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional chnanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    CAS  CrossRef  Google Scholar 

  • Jiang F, Cai W, Tan G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res Lett. 2017;12:401.

    CrossRef  Google Scholar 

  • Kamnev AA, Manchenkova PV, Yu A, Dyatlova AV, Tugarova AV. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struct. 2017;1140:106–12.

    CAS  CrossRef  Google Scholar 

  • Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol. 2014;5:159.

    PubMed  PubMed Central  Google Scholar 

  • Kapur M, Soni K, Kohli K. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv Tech Biol Med. 2017;5:198.

    CrossRef  Google Scholar 

  • Kazlev AM. History of nanotechnology. 1998. http://www.kheper.net/topics/nanotech/nanotech- history.htm. Accessed 25 Nov 2017.

  • Klaine S, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, von der Kammer F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem. 2012;31:3–14.

    CAS  CrossRef  Google Scholar 

  • Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155–62.

    CAS  CrossRef  Google Scholar 

  • Kora AJ, Rastogi L. Bacteriogenic synthesis of selenium nanoparticles by Escherichia coli ATCC 35218 and its structural characterisation. IET Nanobiotechnol. 2017;11(2):179–84.

    CrossRef  Google Scholar 

  • Kumar A, Beni YA, Parang K. Cyclic peptide – selenium nanoparticles as drug transporters. Mol Pharm. 2014;11:3631–41.

    CrossRef  Google Scholar 

  • Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89:251–6.

    CAS  CrossRef  Google Scholar 

  • Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano. 2012;6:6578–91.

    CAS  CrossRef  Google Scholar 

  • Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine. 2015;11(4):947–58.

    CAS  CrossRef  Google Scholar 

  • Loeschner K, Hadrup N, Hansen M, Pereira SA, Gammelgaard B, Møller LH, Mortensen A, Lam HR, Larsen EH. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics. 2014;6(2):330–7.

    CAS  CrossRef  Google Scholar 

  • Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond). 2017;12(9):1075–89.

    CAS  CrossRef  Google Scholar 

  • Mal J, Veneman WJ, Nancharaiah JV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerrio) embryogenesis. Nanotoxicology 2017;11(1):87–97.

    CAS  CrossRef  Google Scholar 

  • Mal J, Veneman WJ, Nancharaiah YV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2016;11(1):87–97.

    CrossRef  Google Scholar 

  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2(145):1–8.

    Google Scholar 

  • Micheletti C, Roman M, Tedesco E, Olivato I, Benetti F. Implementation of the NANoREG safe-by-design approach for different nanomaterial applications. J Phys Conf Ser. 2017;838:012019.

    CrossRef  Google Scholar 

  • Nancharaiah YV, Lens PNL. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015;33:323–30.

    CAS  CrossRef  Google Scholar 

  • Nasirpour M, Sadeghi AA, Chamani M. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobolins in male rats exposed to oxidative stress. J Livestock Sci. 2017;8:81–7.

    Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42(3):1147–235.

    CAS  CrossRef  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Alberto Gallego-Urrea A, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2011;31:50–9.

    CrossRef  Google Scholar 

  • Panahi-Kalamuei M, Salavati-Niasari M, Hosseinpour-Mashkani SM. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. J Alloy Compd. 2014;617:627–32.

    CAS  CrossRef  Google Scholar 

  • Parnham MJ, Graf E. Pharmacology of synthetic organic selenium compounds. Prog Drug Res. 1991;36:9–47.

    CAS  PubMed  Google Scholar 

  • Paul S, Chugh A. Assessing the role of Ayurvedic ‘Bhasmas’ as Ethno- nanomedicine in the metal based nanomedicine patent regime. J Intellect Pro Rig. 2011;16:509–15.

    Google Scholar 

  • Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res. 2014;157(3):275–83.

    CAS  CrossRef  Google Scholar 

  • Prasad KS, Patel H, Patel T, Patel K, Selvaraj K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces. 2013;103:261–6.

    CAS  CrossRef  Google Scholar 

  • Ramamurthy C, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2013;36(8):1131–9.

    CAS  CrossRef  Google Scholar 

  • Renwick MJ, Brogan DM, Mossialos E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot (Tokyo). 2016;69(2):73–88.

    CAS  CrossRef  Google Scholar 

  • Richards DG, McMillin DL, Mein EA, Nelson CD. Gold and its relationship to neurological/glandular conditions. Int J Neurosci. 2002;112:31–53.

    CrossRef  Google Scholar 

  • Rösslein M, Liptrott N, Owen A, Boisseau P, Wick P, Herrmann IK. Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology. 2017;11(2):147–9.

    CrossRef  Google Scholar 

  • Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci. 2012;13(8):9649–72.

    CrossRef  Google Scholar 

  • Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A. Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol. 2014;14(1):990–1006.

    CAS  CrossRef  Google Scholar 

  • Shahbazi B, Taghipour M, Rahmani H, Sadrjavadi K, Fattahi A. Preparation and characterization of silk fibroin/oligochitosan nanoparticles for siRNA delivery. Colloids Surf B Biointerfaces. 2015;136:867–77.

    CAS  CrossRef  Google Scholar 

  • Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41.

    CAS  CrossRef  Google Scholar 

  • Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam JS, Lee SS. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules. 2014;19(3):2761–70.

    CrossRef  Google Scholar 

  • Shoeibi S, Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol. 2017;39:135–9.

    CAS  CrossRef  Google Scholar 

  • Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Perspective of selenium nanoparticles as a nutrition supplement. Nutrition. 2017;33:83–90.

    CAS  CrossRef  Google Scholar 

  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82.

    CAS  CrossRef  Google Scholar 

  • Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013;244:26–9.

    CAS  CrossRef  Google Scholar 

  • Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng. 2015;38(9):1723–30.

    CAS  CrossRef  Google Scholar 

  • Tan L, Jia X, Jiang X, Zhang Y, Tang H, Yao S, Xie Q. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron. 2009;24(7):2268–72.

    CAS  CrossRef  Google Scholar 

  • Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010;5:213–30.

    CAS  CrossRef  Google Scholar 

  • Tinggi U. Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett. 2003;137:103–10.

    CAS  CrossRef  Google Scholar 

  • Tor Y, Fair R. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:25–64.

    PubMed  PubMed Central  Google Scholar 

  • Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine. 2011;6:1553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ungvári É, Monori I, Megyeri A, Csiki Z, Prokisch J, Sztrik A, Jávor A, Benkő I. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food Chem Toxicol. 2014;64:298–306.

    CrossRef  Google Scholar 

  • Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.

    CAS  CrossRef  Google Scholar 

  • Wang J, Zhang Y, Yuan Y, Yue T. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem Toxicol. 2014;68:183–9.

    CAS  CrossRef  Google Scholar 

  • Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev. 2013;42(23):8870–94.

    CAS  CrossRef  Google Scholar 

  • Wei A, Pan L, Huang W. Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B. 2011;176:1409–21.

    CAS  CrossRef  Google Scholar 

  • Xi GC, Xiong K, Zhao QB, Zhang R, Zhang HB, Qian YT. Nucleation-dissolution-recrystallization: a new growth mechanism for t-selenium nanotubes. Cryst Growth Des. 2006;6(2):577–82.

    CAS  CrossRef  Google Scholar 

  • Xiao X, Zhao C, Yang S, Guo S. Characteristics of nano-selenium synthesized by Se(IV) adsorption and reduction with anoxygenic photosynthetic bacteria. Digest J Nanomat Biostruct. 2017;12(1):205–14.

    Google Scholar 

  • Xu H, Cao W, Zhang X. Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res. 2013;46(7):1647–58.

    CAS  CrossRef  Google Scholar 

  • Xu Q, He C, Xiao C, Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci. 2016;16(5):635–46.

    CAS  CrossRef  Google Scholar 

  • Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:428–45.

    CAS  CrossRef  Google Scholar 

  • Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomedicine. 2012;7:835–44.

    CAS  CrossRef  Google Scholar 

  • Yu B, Li XL, Zheng WJ, Feng YX, Wong YS, Chen TF. pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects. J Mater Chem B. 2014;2(33):5409–18.

    CAS  CrossRef  Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88(1):196–201.

    CAS  CrossRef  Google Scholar 

  • Zheng Y, Chen T. Targeting nanomaterials: future drugs for cancer chemotherapy. Int J Nanomedicine. 2012;7:3939–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater. 2015;11:368–80.

    CAS  CrossRef  Google Scholar 

  • Zheng W, Yin T, Chen Q, Qin X, Huang X, Zhao S, Xu T, Chen L, Liu J. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta Biomater. 2016;31:197–210.

    CAS  CrossRef  Google Scholar 

  • Zhou W, Wang L, Li F, Zhang W, Huang W, Huo F, Xu H. Selenium-containing polymer@metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system. Adv Funct Mater. 2017;27:1605465.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vinković Vrček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Vinković Vrček, I. (2018). Selenium Nanoparticles: Biomedical Applications. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_21

Download citation