Advertisement

Selenium pp 373-391 | Cite as

Selenium and Toxicological Aspects: Cytotoxicity, Cellular Bioavailability, and Biotransformation of Se Species

  • Franziska Ebert
  • Sandra M. Müller
  • Soeren Meyer
  • Tanja SchwerdtleEmail author
Chapter
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

This book chapter reviews the current literature regarding the cytotoxicity, bioavailability, and biotransformation of the diet-relevant selenium species selenite, Se-methylselenocysteine, selenomethionine, as well as selenium excretion metabolites trimethylselenonium and selenosugar 1 in cultured mammalian cells. Limitations as well as potentialities are summarized. In case of no cytotoxic response, it is needful to ensure that the respective selenium species are bioavailable to the respective cellular models before concluding that they exert no toxicity in vitro. To further understand selenium species metabolism in vitro but also to unveil potential causes for the differing cytotoxic potencies of selenium species, a combined quantification of free selenium species in cell lysates and total cellular selenium quantification is recommended. Finally, in vitro approaches are reviewed that helped to identify new selenium species metabolites and thus contributed to our understanding of the role of these metabolites in the detoxification or toxification of selenium species.

Keywords

In vitro Viability Cellular bioavailability and biotransformation Selenium speciation Selenite Selenomethionine Se-methylselenocysteine Trimethylselenonium Selenosugar 1 

References

  1. Anan Y, Kimura M, Hayashi M, Koike R, Ogra Y. Detoxification of selenite to form selenocyanate in mammalian cells. Chem Res Toxicol. 2015;28(9):1803–14.  https://doi.org/10.1021/acs.chemrestox.5b00254.CrossRefPubMedGoogle Scholar
  2. European Union. Directive 2002/46/EC of the European Parliament and the Council of 10 June 2002 on the approximation of the laws of the member states relating to food supplements. 2015.Google Scholar
  3. Gabel-Jensen C, Gammelgaard B. Selenium metabolism in hepatocytes incubated with selenite, selenate, selenomethionine, Se-methylselenocysteine and methylseleninc acid and analysed by LC-ICP-MS. J Anal At Spectrom. 2010;25(3):414–8.  https://doi.org/10.1039/b921365a.CrossRefGoogle Scholar
  4. Gabel-Jensen C, Lunoe K, Gammelgaard B. Formation of methylselenol, dimethylselenide and dimethyldiselenide in in vitro metabolism models determined by headspace GC-MS. Metallomics. 2010;2(2):167–73.  https://doi.org/10.1039/b914255j.CrossRefPubMedGoogle Scholar
  5. Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell-forms and transformations. Anal Bioanal Chem. 2011;399(5):1743–63.  https://doi.org/10.1007/s00216-010-4212-8.CrossRefPubMedGoogle Scholar
  6. Goel A, Fuerst F, Hotchkiss E, Boland CR. Selenomethionine induces p53 mediated cell cycle arrest and apoptosis in human colon cancer cells. Cancer Biol Ther. 2006;5(5):529–35.  https://doi.org/10.4161/cbt.5.5.2654.CrossRefPubMedGoogle Scholar
  7. Hendrickx W, Decock J, Mulholland F, Bao Y, Fairweather-Tait S. Selenium biomarkers in prostate cancer cell lines and influence of selenium on invasive potential of PC3 cells. Front Oncol. 2013;3:239.  https://doi.org/10.3389/fonc.2013.00239.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hinrichsen S, Planer-Friedrich B. Cytotoxic activity of selenosulfate versus selenite in tumor cells depends on cell line and presence of amino acids. Environ Sci Pollut Res Int. 2016;23(9):8349–57.  https://doi.org/10.1007/s11356-015-5960-y.CrossRefPubMedGoogle Scholar
  9. Hoefig CS, Renko K, Kohrle J, Birringer M, Schomburg L. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem. 2011;22(10):945–55.  https://doi.org/10.1016/j.jnutbio.2010.08.006.CrossRefPubMedGoogle Scholar
  10. Jung U, Zheng X, Yoon SO, Chung AS. Se-methylselenocysteine induces apoptosis mediated by reactive oxygen species in HL-60 cells. Free Radic Biol Med. 2001;31(4):479–89.  https://doi.org/10.1016/S0891-5849(01)00604-9.CrossRefPubMedGoogle Scholar
  11. Kipp AP, Frombach J, Deubel S, Brigelius-Flohe R. Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynthesis. Methods Enzymol. 2013;527:87–112.  https://doi.org/10.1016/B978-0-12-405882-8.00005-2.CrossRefPubMedGoogle Scholar
  12. Kuehnelt D, Kienzl N, Traar P, Le NH, Francesconi KA, Ochi T. Selenium metabolites in human urine after ingestion of selenite, L-selenomethionine, or DL-selenomethionine: a quantitative case study by HPLC/ICPMS. Anal Bioanal Chem. 2005;383(2):235–46.  https://doi.org/10.1007/s00216-005-0007-8.CrossRefPubMedGoogle Scholar
  13. Kuehnelt D, Engstrom K, Skroder H, Kokarnig S, Schlebusch C, Kippler M, Alhamdow A, Nermell B, Francesconi K, Broberg K, Vahter M. Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene. Am J Clin Nutr. 2015;102(6):1406–15.  https://doi.org/10.3945/ajcn.115.114157.CrossRefPubMedGoogle Scholar
  14. Lo LW, Koropatnick J, Stich HF. The mutagenicity and cytotoxicity of selenite, “activated” selenite and selenate for normal and DNA repair-deficient human fibroblasts. Mutat Res. 1978;49(3):305–12.  https://doi.org/10.1016/0027-5107(78)90103-3.CrossRefPubMedGoogle Scholar
  15. Lu J, Kaeck M, Jiang C, Wilson AC, Thompson HJ. Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochem Pharmacol. 1994;47(9):1531–5.  https://doi.org/10.1016/0006-2952(94)90528-2.CrossRefPubMedGoogle Scholar
  16. Lu J, Jiang C, Kaeck M, Ganther H, Vadhanavikit S, Ip C, Thompson H. Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol. 1995;50(2):213–9.  https://doi.org/10.1016/0006-2952(95)00119-K.CrossRefPubMedGoogle Scholar
  17. Lunoe K, Gabel-Jensen C, Sturup S, Andresen L, Skov S, Gammelgaard B. Investigation of the selenium metabolism in cancer cell lines. Metallomics. 2011;3(2):162–8.  https://doi.org/10.1039/c0mt00091d.CrossRefPubMedGoogle Scholar
  18. Marschall TA, Bornhorst J, Kuehnelt D, Schwerdtle T. Differing cytotoxicity and bioavailability of selenite, methylselenocysteine, selenomethionine, selenosugar 1 and trimethylselenonium ion and their underlying metabolic transformations in human cells. Mol Nutr Food Res. 2016;60(12):2622–32.  https://doi.org/10.1002/mnfr.201600422.CrossRefGoogle Scholar
  19. Marschall TA, Kroepfl N, Jensen KB, Bornhorst J, Meermann B, Kuehnelt D, Schwerdtle T. Tracing cytotoxic effects of small organic Se species in human liver cells back to total cellular Se and Se metabolites. Metallomics. 2017;9(3):268–77.  https://doi.org/10.1039/c6mt00300a.CrossRefPubMedGoogle Scholar
  20. Rezacova K, Canova K, Bezrouk A, Rudolf E. Selenite induces DNA damage and specific mitochondrial degeneration in human bladder cancer cells. Toxicol In Vitro. 2016;32:105–14.  https://doi.org/10.1016/j.tiv.2015.12.011.CrossRefPubMedGoogle Scholar
  21. Schroterova L, Kralova V, Voracova A, Haskova P, Rudolf E, Cervinka M. Antiproliferative effects of selenium compounds in colon cancer cells: comparison of different cytotoxicity assays. Toxicol In Vitro. 2009;23(7):1406–11.  https://doi.org/10.1016/j.tiv.2009.07.013.CrossRefPubMedGoogle Scholar
  22. Shen HM, Yang CF, Ong CN. Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells. Int J Cancer. 1999;81(5):820–8.  https://doi.org/10.1002/(SICI)1097-0215(19990531)81:5<820::AID-IJC25>3.0.CO;2-F.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Spallholz JE, Palace VP, Reid TW. Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Biochem Pharmacol. 2004;67(3):547–54.  https://doi.org/10.1016/j.bcp.2003.09.004.CrossRefPubMedGoogle Scholar
  24. Stewart MS, Davis RL, Walsh LP, Pence BC. Induction of differentiation and apoptosis by sodium selenite in human colonic carcinoma cells (HT29). Cancer Lett. 1997;117(1):35–40.  https://doi.org/10.1016/S0304-3835(97)00212-7.CrossRefPubMedGoogle Scholar
  25. Takahashi K, Suzuki N, Ogra Y. Bioavailability comparison of nine bioselenocompounds in vitro and in vivo. Int J Mol Sci. 2017;18(3)  https://doi.org/10.3390/ijms18030506.CrossRefGoogle Scholar
  26. Villavicencio LLF, Cruz-Jimenez G, Barbosa-Sabanero G, Kornhauser-Araujo C, Mendoza-Garrido ME, de la Rosa G, Sabanero-Lopez M. Human lung cancer cell line A-549 ATCC is differentially affected by supranutritional organic and inorganic selenium. Bioinorg Chem Appl. 2014;2014:923834.  https://doi.org/10.1155/2014/923834.CrossRefGoogle Scholar
  27. Wang Y, Fang W, Huang Y, Hu F, Ying Q, Yang W, Xiong B. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite. Free Radic Biol Med. 2015;79:186–96.  https://doi.org/10.1016/j.freeradbiomed.2014.11.015.CrossRefPubMedGoogle Scholar
  28. Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, Howard DL, Witting PK, Musgrave IF, Harris HH. Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies. J Am Chem Soc. 2011a;133(45):18272–9.  https://doi.org/10.1021/ja206203c.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, Howard DL, Musgrave IF, Harris HH. Uptake, distribution, and speciation of selenoamino acids by human cancer cells: X-ray absorption and fluorescence methods. Biochemistry. 2011b;50(10):1641–50.  https://doi.org/10.1021/bi101678a.CrossRefPubMedGoogle Scholar
  30. Whanger PD. Selenium and its relationship to cancer: an update. Br J Nutr. 2004;91(1):11–28.  https://doi.org/10.1079/Bjn20031015.CrossRefPubMedGoogle Scholar
  31. Xiang N, Zhao R, Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol. 2009;63(2):351–62.  https://doi.org/10.1007/s00280-008-0745-3.CrossRefPubMedGoogle Scholar
  32. Zhao R, Domann FE, Zhong W. Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells. Mol Cancer Ther. 2006;5(12):3275–84.  https://doi.org/10.1158/1535-7163.MCT-06-0400.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Franziska Ebert
    • 1
  • Sandra M. Müller
    • 1
  • Soeren Meyer
    • 1
  • Tanja Schwerdtle
    • 1
    • 2
    Email author
  1. 1.Department of Food ChemistryInstitute of Nutritional Science, University of PotsdamPotsdamGermany
  2. 2.TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased ElderlyPotsdam-Berlin-JenaGermany

Personalised recommendations