Advertisement

Introduction

  • Michał NiełacznyEmail author
  • Barnat Wiesław
  • Tomasz Kapitaniak
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter provides crucial information that was found to be relevant to the present study. The related information regarding the unicycle, such as design of particular types, unicycle performance during riding and a brief history of the unicycle evolution, is presented. Additionally, technical aspects of the unicycle approach in designing and controlling of walking robots are discussed.

References

  1. 1.
    Limebeer, D., & Sharp, R. (2006). Bicycles, motorcycles, and models. IEEE Control Systems, 26, 34–61.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    https://www.qu-ax.de/en/. Retrieved 1, 2017.
  4. 4.
    Cossalter, V. (2006). Motorcycle dynamics. Morrisville: Lulu Press.Google Scholar
  5. 5.
    Clauser, C. E., McConville, J. T., & Young, J. W. (1971). Weight, volume, and center of mass of segments of the human body. Journal of Occupational and Environmental Medicine, 13, 270–280.Google Scholar
  6. 6.
    http://www.krisholm.com/en/. Retrieved 3, 2015. (Figure 1.5 presents Max Schulz (photo by George Smith). Scott Wilton is shown in Figure 1.6 (photo by Warren Howell). Courtesy of Kris Holm).
  7. 7.
    Wendlandt, J. (1995). Pattern evocation and energy-momentum integration of the double spherical pendulum. M.A. Thesis, University of California.Google Scholar
  8. 8.
    Marsden, J., & Scheurle, J. (1993). Lagrangian reduction and the double spherical pendulum. Basel: Birkhauser Verlag.zbMATHGoogle Scholar
  9. 9.
    Marsden, J. (1995). Visualization of orbits and pattern evocation for the double spherical pendulum. In Proceedings of the ICIAM Conference, Hamburg.Google Scholar
  10. 10.
    Cheng, F., Zhong, G., Li, Y., & Xu, Z. (1996). Fuzzy control of a double-inverted pendulum. Fuzzy Sets and Systems, 79, 315–321.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yeung, S. (1995). The triple spherical pendulum. Technical Report, California Institute of Technology, Division of Chemistry and Chemical Engineering.Google Scholar
  12. 12.
    Hoshino, T., Kawai, H., & Furuta, K. (2009). Methoden und Anwendugen der Steuerungs-, Regelungs- und Informationstechnik, 48, 577–587.Google Scholar
  13. 13.
    Furut, K., Ochiai, T., & Ono, N. (1984). Attitude control of a triple inverted pendulum. International Journal of Control, 36, 1351–1365.CrossRefGoogle Scholar
  14. 14.
    Kajita, S., Kanehiro, F., Kando, K., Yokoi, K., & Hirukawa, H. (2001). The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE(pp. 239–246).Google Scholar
  15. 15.
    Rong, Y. (2000) Geometric techniques for control of a 2-DOF spherical inverted pendulum. Ph.D. Thesis, University of Science and Technology, Hong Kong.Google Scholar
  16. 16.
    Zhong, W., & Rock, H. (2001). Energy and passivity based control of the double inverted pendulum on a cart. In Proceedings of the 2001 IEEE International Conference on Control Applications, IEEE (pp. 896–900).Google Scholar
  17. 17.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Michał Niełaczny
    • 1
    Email author
  • Barnat Wiesław
    • 2
  • Tomasz Kapitaniak
    • 1
  1. 1.Division of DynamicsLodz University of TechnologyŁódźPoland
  2. 2.Military University of TechnologyWarsawPoland

Personalised recommendations