Challenges and Complications of Immobility

  • Christina May Moran de Brito
  • Linamara Rizzo Battistella
  • Maria Lúcia Costacurta Guarita


Prevention and treatment of the complications of immobility play an important role on the care of hospitalized patients with traumatic injuries. Effects of immobility involve several body functions and may lead to future morbidity, disability, and even mortality, with significant socioeconomic impact. In addition to the most evident complications, such as pressure ulcers, deformities, joint pain, loss of muscle and bone mass, deep vein thrombosis and pulmonary embolism, atelectasis and pneumonia, and also injuries to the cardiovascular, endocrine, immune, gastrointestinal, excretory, vestibular, cognitive, and psychological systems have been reported. Regarding traumatic brain injury patients, disorders resulting from prolonged bed rest periods are combined with injury-related morbidities and complications. Early mobilization strategies have proven to be a feasible and safe approach that may promote improved physical function, higher independence levels, and an accelerated process of the return to premorbidity condition and activities. Moreover, early rehabilitation has also been associated with the reduction of the length of hospital stay and costs.


Bed rest Immobilization Immobility complications Traumatic brain injury Disuse Bone loss Muscle loss Pressure ulcers Deformity Postural hypotension Deep vein thrombosis Pulmonary embolism Early mobilization Early rehabilitation 


  1. 1.
    The Holy Bible. The new American Bible. Genesis. 1970;2:15.Google Scholar
  2. 2.
    Bortz WM. The disuse syndrome. West J Med. 1984;141(5):691–4.PubMedGoogle Scholar
  3. 3.
    Stiles A. The rest cure, 1873–1925. In: Felluga DF, editor. BRANCH: Britain, representation and nineteenth-century history; 2012. p. 1–11.Google Scholar
  4. 4.
    Needham DM. Mobilizing patients in the intensive care unit: improving neuromuscular weakness and physical function. JAMA. 2008;300(14):1685–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J. From space to earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur J Appl Physiol. 2007;101:143–94.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Allen C, Glasziou P, Del Mar C. Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet. 1999;354(9186):1229–33.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Corcoran PJ. Use it or lose it--the hazards of bed rest and inactivity. West J Med. 1991;154(5):536–8.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30(5):1151.e9–1151.e14.CrossRefGoogle Scholar
  9. 9.
    Liu Q, Zhou R, Zhao X, Oei TPS. Effects of prolonged head-down bed rest on working memory. Neuropsychiatr Dis Treat. 2015;11:835–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Truong AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: mobilizing patients in the intensive care unit--from pathophysiology to clinical trials. Crit Care. 2009;13(4):216.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bringard A, Pogliaghi S, Adami A, De Roia G, Lador F, Lucini D, et al. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir Physiol Neurobiol. 2010;172(1–2):53–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Belavy DL, Seibel MJ, Roth HJ, Armbrecht G, Rittweger J, Felsenberg D. The effects of bed rest and counter measure exercise on the endocrine system in male adults - evidence for immobilization induced reduction in SHBG levels. J Endocrinol Investig. 2011;35(1):54–62.Google Scholar
  13. 13.
    Hoff P, Belavy DL, Huscher D, Lang A, Hahne M, Kuhlmey AK, et al. Effects of 60-day bed rest with and without exercise on cellular and humoral immunological parameters. Cell Mol Immunol. 2015;12(4):483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Iovino P, Chiarioni G, Bilancio G, Cirillo M, Mekjavic IB, Pisot R, et al. New onset of constipation during long-term physical inactivity: a proof-of-concept study on the immobility-induced bowel changes. PLoS One. 2013;8(8):e72608.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Okada A, Ohshima H, Itoh Y, Yasui T, Tozawa K, Kohri K. Risk of renal stone formation induced by long-term bed rest could be decreased by premedication with bisphosphonate and increased by resistive exercise. Int J Urol. 2008;15(7):630–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Dyckman DJ, Sauder CL, Ray CA. Effects of short-term and prolonged bed rest on the vestibulosympathetic reflex. Am J Physiol Heart Circ Physiol. 2012;302:H368–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Lipnicki DM, Gunga HC, Belavỳ DL, Felsenberg D. Bed rest and cognition: effects on executive functioning and reaction time. Aviat Space Environ Med. 2009;80(12):1018–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Ishizaki Y, Fukuoka H, Katsura T, Nishimura Y, Kiriyama M, Higurashi M, et al. Psychological effects of bed rest in young healthy subjects. Acta Physiol Scand Suppl. 1994;616:83–7.PubMedGoogle Scholar
  19. 19.
    Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med. 2012;40(2):502–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19(Suppl 3):S6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med. 2010;38(7):1513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Division of Mental Health and Prevention of Substance Abuse WHO. WHOQOL: measuring quality of life (Internet). Geneva: World Health Organization; 1997. Available from: Scholar
  24. 24.
    Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J. 2012;23(1):5–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gorecki C, Brown JM, Nelson EA, Briggs M, Schoonhoven L, Dealey C, et al. Impact of pressure ulcers on quality of life in older patients: a systematic review. J Am Geriatr Soc. 2009;57(7):1175–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Parker A, Sricharoenchai T, Needham DM. Early rehabilitation in the intensive care unit: preventing physical and mental health impairments. Curr Phys Med Rehabil Rep. 2013;1(4):307–14.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Murakami FM, Yamaguti WP, Onoue MA, Mendes JM, Pedrosa RS, Maida ALV, et al. Functional evolution of critically ill patients undergoing an early rehabilitation protocol. Rev Bras Ter Intensiva. 2015;27(2):161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gosselink J, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, Schonhofer B, Stiller K, van de Leur H, Vincent JLRB. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008;34(7):1188–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Stiller K. Safety issues that should be considered when mobilizing critically ill patients. Crit Care Clin. 2007;23:35–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Clark DE, Lowman JD, Griffin RL, Matthews HM, Reiff DA. Effectiveness of an early mobilization protocol in a trauma and burns intensive care unit: a retrospective cohort study. Phys Ther. 2012;93(2):186–96.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Halar EM, Bell KR. Imobilidade. In: DeLisa JA, Gans BM, editors. Tratado de Medicina de Reabilitação. 3rd ed. São Paulo: Editora Manole Ltda; 2002. p. 1067–89.Google Scholar
  32. 32.
    de Kruijk JR, Leffers P, Meerhoff S, Rutten J, Twijnstra A. Effectiveness of bed rest after mild traumatic brain injury: a randomised trial of no versus six days of bed rest. J Neurol Neurosurg Psychiatry. 2002;73(2):167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Singer BJ, Jegasothy GM, Singer KP, Allison GT, Dunne JW. Incidence of ankle contracture after moderate to severe acquired brain injury. Arch Phys Med Rehabil. 2004;85(9):1465–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Carlile M, Nicewander D, Yablon SA, Brown A, Brunner R, Burke D, et al. Prophylaxis for venous thromboembolism during rehabilitation for traumatic brain injury: a multicenter observational study. J Trauma. 2010;68(4):916–23.PubMedGoogle Scholar
  35. 35.
    Grüner ML, Terhaag D. Multimodal early onset stimulation (MEOS) in rehabilitation after brain injury. Brain Inj. 2000;14(6):585–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Nicks DK, Beneke WM, Key RM, Timson BF. Muscle fibre size and number following immobilisation atrophy. J Anat. 1989;163:1–5.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Haggmark T, Eriksson E, Jansson E. Muscle fiber type changes in human skeletal muscle after injuries and immobilization. Orthopedics. 1986;9(0147-7447 (Print)):181–5.Google Scholar
  38. 38.
    Puthucheary ZA, Phadke R, Rawal J, McPhail MJW, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43(8):1603–11.PubMedCrossRefGoogle Scholar
  39. 39.
    LeBlanc D, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E. Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol. 1992;73:2172–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol. 2003;551(Pt 1):33–48.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ashmore CR, Summers PJ. Stretch-induced growth in chicken wing muscles: myofibrillar proliferation. Am J Phys. 1981;241(3):C93–7.CrossRefGoogle Scholar
  42. 42.
    Schmitt DA, Schwarzenberg M, Tkaczuk J, Hebrard S, Brandenberger G, Mauco G, et al. Head-down tilt bed rest and immune responses. Pflügers Arch Eur J Physiol. 2000;441(2–3 Suppl):R79–84.CrossRefGoogle Scholar
  43. 43.
    Pawlak W, Kedziora J, Zolynski K, Kedziora-Kornatowska K, Blaszczyk J, Witkowski P. Free radicals generation by granulocytes from men during bed rest. J Gravit Physiol. 1998;5(1):P131–2.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lofvenmark I, Werhagen L, Norrbrink C. Spasticity and bone density after a spinal cord injury. J Rehabil Med. 2009;41(13):1080–4.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Giannotti S, Bottai V, Dell’osso G, De Paola G, Bugelli G, Pini E, et al. Disuse osteoporosis of the upper limb: assessment of thirty patients. Clin Cases Miner Bone Metab (Internet). 2013 (cited 2016 Apr 30);10(2):129–32. Available from:
  46. 46.
    Zerath E. Effects of microgravity on bone and calcium homeostasis. Adv Space Res Off J Comm Space Res (COSPAR). 1998;21:1049–58.CrossRefGoogle Scholar
  47. 47.
    Steinberg FU. The immobilized patient. Boston: Springer US; 1980. p. 34–43.CrossRefGoogle Scholar
  48. 48.
    Houde JP, Schulz LA, Morgan WJ, Breen T, Warhold L, Crane GK, et al. Bone mineral density changes in the forearm after immobilization. Clin Orthop Relat Res. 1995;(317):199–205.Google Scholar
  49. 49.
    Tilton FE, Degioanni JJ, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med. 1980;51(11):1209–13.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gross TS, Rubin CT. Uniformity of resorptive bone loss induced by disuse. J Orthop Res. 1995;13(5):708–14.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Carmeliet G, Nys G, Bouillon R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res. 1997;12(5):786–94.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon J, Klein-Nulend J. Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res. 2006;24(6):1170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Knothe Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol. 2000;203(Pt 18):2737–45.PubMedGoogle Scholar
  54. 54.
    Brito CMM, Battistella LR, Sakamoto H, Saito ET. Densidade Mineral Óssea após Lesão Medular. Acta Fisiátrica. 2002;9:127–33.Google Scholar
  55. 55.
    Sato Y, Kuno H, Kaji M, Ohshima Y, Asoh T, Oizumi K. Increased bone resorption during the first year after stroke. Stroke. 1998;29(7):1373–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Daci E, Van Cromphaut S, Bouillon R. Mechanisms influencing bone metabolism in chronic illness. Horm Res. 2002;58:44–51.PubMedGoogle Scholar
  57. 57.
    Pang MYC, Ashe MC, Eng JJ. Muscle weakness, spasticity and disuse contribute to demineralization and geometric changes in the radius following chronic stroke. Osteoporos Int. 2007;18(9):1243–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    De Brito CMM, Garcia ACF, Takayama L, Fregni F, Battistella LR, Pereira RMR. Bone loss in chronic hemiplegia: a longitudinal cohort study. J Clin Densitom. 2013;16(2):160–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hudson SJ, Brett SJ. Heterotopic ossification – a long-term consequence of prolonged immobility. Crit Care (Internet). 2006 (cited 2016 Apr 30);10(6):174. Available from: Scholar
  60. 60.
    Hartmann APB, Ximenes AR, Hartmann LG, Fernandes AR, Natour J, D’Ippolito G. Diagnóstico por imagem na avaliação da ossificação heterotópica. Rev Bras Reumatol. Sociedade Brasileira de Reumatologia. 2004;44(4):291–3.CrossRefGoogle Scholar
  61. 61.
    Argyropoulou MI, Kostandi E, Kosta P, Zikou AK, Kastani D, Galiatsou E, et al. Heterotopic ossification of the knee joint in intensive care unit patients: early diagnosis with magnetic resonance imaging. Crit Care (Internet). 2006 (cited 2016 Apr 30);10(5):R152. Available from: Scholar
  62. 62.
    Vanden Bossche L, Vanderstraeten G. Heterotopic ossification: a review. (Review) (80 refs). J Rehabil Med. 2005;37(Sweden PT - Journal Article PT - Review LG - English DC - 20050725):129–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Trudel G, Uhthoff HK. Contractures secondary to immobility: is the restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil. 2000;81(1):6–13.PubMedCrossRefGoogle Scholar
  64. 64.
    Oliveira RCC, Haddad MSCM, Koyama RCC. Síndrome da imobilização In: Greve JMGG, Amatuzzi MM, editors. Medicina de reabilitação aplicada à ortopedia e traumatologia. 1st ed. São Paulo: Rocca; 1999. p. 381–98.Google Scholar
  65. 65.
    Newton PO, Woo SL, Kitabayashi LR, Lyon RM, Anderson DR, Akeson WH. Ultrastructural changes in knee ligaments following immobilization. Matrix. 1990;10(5):314–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Lindgren M, Unosson M, Fredrikson M, Ek AC. Immobility - a major risk factor for development of pressure ulcers among adult hospitalized patients: a prospective study. Scand J Caring Sci. 2004;18(1):57–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Azuh O, Gammon H, Burmeister C, Frega D, Nerenz D, DiGiovine B, et al. Benefits of early active mobility in the medical intensive care unit - a pilot study. Am J Med. 2016;129:866.PubMedCrossRefGoogle Scholar
  68. 68.
    Dhandapani M, Dhandapani S, Agarwal M, Mahapatra AK. Pressure ulcer in patients with severe traumatic brain injury: significant factors and association with neurological outcome. J Clin Nurs. 2014;23(7–8):1114–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Lundbye-Jensen J, Nielsen JB. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans. J Physiol. 2008;586(17):4121–35.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dupui P, Montoya R, Costes-Salon MC, Séverac A, Güell A. Balance and gait analysis after 30 days −6 degrees bed rest: influence of lower-body negative-pressure sessions. Aviat Space Environ Med. 1992;63(11):1004–10.PubMedGoogle Scholar
  71. 71.
    De la Torre G. Cognitive neuroscience in space. Life. 2014;4(3):281–94.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Malathi S, Batmanabane M. Effects of varying periods of immobilization of a limb on the morphology of a peripheral nerve. Acta Morphol Neerl Scand. 1983;21:185–98.PubMedGoogle Scholar
  73. 73.
    Bryant R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):251–62.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Dufton LM, Konik B, Colletti R, Stanger C, Boyer M, Morrow S, et al. Effects of stress on pain threshold and tolerance in children with recurrent abdominal pain. Pain. 2008;136(1–2):38–43.PubMedCrossRefGoogle Scholar
  75. 75.
    Petrie A, Collins W, Solomon P. The tolerance for pain and for sensory deprivation. Am J Psychol. 1960;73(1):80.PubMedCrossRefGoogle Scholar
  76. 76.
    Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 2008;300(6):711–9.CrossRefGoogle Scholar
  77. 77.
    Taylor HL, Henschel A. Effects of bed rest on cardiovascular function and work performance. J Appl Physiol. 1949;2(5):223–39.PubMedCrossRefGoogle Scholar
  78. 78.
    Chobanian AV, Lille RD, Tercyak A, Blevins P. The metabolic and hemodynamic effects of prolonged bed rest in normal subjects. Circulation. 1974;49(3):551–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Demida BF, Machinskiĭ GV. Use of rehabilitation measures for restoration of human physical work capacity after the prolonged limitation of motor activity. Kosm Biol Aviakosm Med. 1979;13(1):74–5.PubMedGoogle Scholar
  80. 80.
    Gibbs NM. Venous thrombosis of the lower limbs with particular reference to bed-rest. Br J Surg. 1957;45(191):209–36.PubMedCrossRefGoogle Scholar
  81. 81.
    Okoye GC, Evans JH, Beattie J, Lowe GD, Lorimer AR, Forbes CD. Response of femoral venous oxygen tension to graduated pressure stockings--possible relationship to deep vein thrombosis. Thromb Haemost. 1984;51(1):103–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Reiff DA, Haricharan RN, Bullington NM, Griffin RL, McGwin G, Rue LW. Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacological prophylaxis. J Trauma. 2009;66(5):1436–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Melada GA, Goldman RH, Luetscher JA, Zager PG. Hemodynamics, renal function, plasma renin, and aldosterone in man after 5 to 14 days of bedrest. Aviat Space Environ Med. 1975;46(8):1049–55.PubMedGoogle Scholar
  84. 84.
    Lamb LE, Stevens PM, Johnson RL. Hypokinesia secondary to chair rest from 4 to 10 days. Aerosp Med (Internet). 1965 (cited 2016 Apr 30);36:755–63. Available from:
  85. 85.
    Pequignot JM, Guell A, Gauquelin G, Jarsaillon E, Annat G, Bes A, et al. Epinephrine, norepinephrine, and dopamine during a 4-day head-down bed rest. J Appl Physiol. 1985;58(1):157–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Schulz H, Hillebrecht A, Karemaker JM, ten Harkel AD, Beck L, Baisch F, et al. Cardiopulmonary function during 10 days of head-down tilt bedrest. Acta Physiol Scand Suppl. 1992;604:23–32.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Svanberg L. Influence of posture on the lung volumes, ventilation and circulation in normals; a spirometric-bronchospirometric investigation. Scand J Clin Lab Invest. 1957;9(Suppl 25):1–195.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Harrison-Felix CL, Whiteneck GG, Jha A, DeVivo MJ, Hammond FM, Hart DM. Mortality over four decades after traumatic brain injury rehabilitation: a retrospective cohort study. Arch Phys Med Rehabil. 2009;90(9):1506–13.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Katzan IL, Cebul RD, Husak SH, Dawson NV, Baker DW. The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology. 2003;60(4):620–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg. 2004;239(4):553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bloomfield SA. Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc. 1997;29(2):197–206.PubMedCrossRefGoogle Scholar
  92. 92.
    Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol. 2012;3:60.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lim YH, Kim DH, Lee MY, Joo MC. Bowel dysfunction and colon transit time in brain-injured patients. Ann Rehabil Med. 2012;36(3):371–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chua K, Chuo A, Kong KH. Urinary incontinence after traumatic brain injury: incidence, outcomes and correlates. Brain Inj. 2003;17(6):469–78.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik A, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.CrossRefGoogle Scholar
  96. 96.
    Feliciano V, Albuquerque CG, Andrade FM, Dantas CM, Lopez A, Ramos FF, et al. A influência da mobilização precoce no tempo de internamento em unidade de terapia intensiva. ASSOBRAFIR Ciênc. 2012;3(2):31–42.Google Scholar
  97. 97.
    Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24(2):173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Soares TR, Avena KM, Olivieri FM, Feijó LF, Mendes KM, Souza Filho SA, et al. Retirada do leito após a descontinuação da ventilação mecânica: há repercussão na mortalidade e no tempo de permanência na unidade de terapia intensiva? Rev Bras Ter Intensiva. 2010;22(1):27–32.PubMedCrossRefGoogle Scholar
  99. 99.
    Pires-Neto RC, Pereira AL, Parente C, Sant’anna GN, Esposito DD, Kimura A, et al. Characterization of the use of a cycle ergometer to assist in the physical therapy treatment of critically ill patients. Rev Bras Ter Intensiva. 2013;25(1):39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Pinheiro AR, Christofoletti G. Motor physical therapy in hospitalized patients in an intensive care unit: a systematic review. Rev Bras Ter Intensiva. 2012;24(2):188–96.PubMedCrossRefGoogle Scholar
  102. 102.
    McWilliams D, Weblin J, Atkins G, Bion J, Williams J, Elliott C, et al. Enhancing rehabilitation of mechanically ventilated patients in the intensive care unit: a quality improvement project. J Crit Care. 2015;30(1):13–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Lord RK, Mayhew CR, Korupolu R, Mantheiy EC, Friedman MA, Palmer JB, et al. ICU early physical rehabilitation programs: financial modeling of cost savings. Crit Care Med. 2013;41(3):717–24.PubMedCrossRefGoogle Scholar
  104. 104.
    Sibinelli M, Maioral DC, Falcão ALE, Kosour C, Dragosavac D, Lima NMFV. Efeito imediato do ortostatismo em pacientes internados na unidade de terapia intensiva de adultos. Rev Bras Ter Intensiva. 2012;24(1):64–71.PubMedCrossRefGoogle Scholar
  105. 105.
    Smelt WL, de Lange JJ, Booij LH. Cardiorespiratory effects of the sitting position in neurosurgery. Acta Anaesthesiol Belg. 1988;39(4):223–31.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christina May Moran de Brito
    • 1
  • Linamara Rizzo Battistella
    • 2
  • Maria Lúcia Costacurta Guarita
    • 3
  1. 1.Rehabilitation DepartmentInstitute of Cancer of São Paulo, Clinics Hospital – School of Medicine – University of São PauloSão PauloBrazil
  2. 2.Legal Medicine, Medical Ethics, Social and Occupational Medicine and Physical and Rehabilitation Medicine InstituteClinics Hospital – School of Medicine – University of São PauloSão PauloBrazil
  3. 3.Institute of Cancer of São Paulo – Rehabilitation Department, São PauloSão PauloBrazil

Personalised recommendations