Skip to main content

Posttraumatic Hydrocephalus: Relevance, Mechanisms, Treatment, and Outcome

  • Chapter
  • First Online:
Topics in Cognitive Rehabilitation in the TBI Post-Hospital Phase

Abstract

Traumatic brain injury (TBI) is the leading cause of death in children and young adults ranging from 15 to 30 years of age in the United States [1, 2]. TBI occurs at an alarming frequency of once every 23 s, resulting in 1.7 million incidences annually, including approximately 52,000 deaths [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto FC, Oliveira MF, Prist R, Silva MR, Silva LF, Capone Neto A. Effect of volume replacement during combined experimental hemorrhagic shock and traumatic brain injury in prostanoids, brain pathology and pupil status. Arq Neuropsiquiatr. 2015;73(6):499–505.

    Article  Google Scholar 

  2. Pinto FC, Capone-Neto A, Prist R, E Silva MR, Poli-de-Figueiredo LF. Volume replacement with lactated Ringer's or 3% hypertonic saline solution during combined experimental hemorrhagic shock and traumatic brain injury. J Trauma. 2006;60(4):758–63; discussion 763-4.

    Article  CAS  Google Scholar 

  3. Kammersgaard LP, Linnemann M, Tibæk M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation. 2013;33(3):473–80.

    PubMed  Google Scholar 

  4. Mazzini L, Campini R, Angelino E, Rognone F, Pastore I, Oliveri G. Posttraumatic hydrocephalus: a clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch Phys Med Rehabil. 2003;84(11):1637–41.

    Article  Google Scholar 

  5. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  CAS  Google Scholar 

  6. Xiong G, Elkind JA, Kundu S, Smith CJ, Antunes MB, Tamashiro E, Kofonow JM, Mitala CM, Cole J, Stein SC, Grady MS, Einhorn E, Cohen NA, Cohen AS. Traumatic brain injury-induced ependymal ciliary loss decreases cerebral spinal fluid flow. J Neurotrauma. 2014;31(16):1396–404.

    Article  Google Scholar 

  7. Liu CL, Chen CC, Lee HC, Cho DY. Matrix metalloproteinase-9 in the ventricular cerebrospinal fluid correlated with the prognosis of traumatic brain injury. Turk Neurosurg. 2014;24(3):363–8.

    PubMed  Google Scholar 

  8. Chen Q, Tang J, Tan L, Guo J, Tao Y, Li L, Chen Y, Liu X, Zhang JH, Chen Z, Feng H. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating Iron accumulation. Stroke. 2015;46(10):2902–8.

    Article  CAS  Google Scholar 

  9. Castejón OJ. Ultrastructural pathology of oligodendroglial cells in traumatic and hydrocephalic human brain edema: a review. Ultrastruct Pathol. 2015;39(6):359–68.

    Article  Google Scholar 

  10. Godbolt AK, Stenberg M, Jakobsson J, Sorjonen K, Krakau K, Stålnacke BM, Nygren DeBoussard C. Subacute complications during recovery from severe traumatic brain injury: frequency and associations with outcome. BMJ Open. 2015;5(4):e007208.

    Article  Google Scholar 

  11. Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res. 2014;5(5):586–94.

    Article  CAS  Google Scholar 

  12. Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):25–38.

    Article  CAS  Google Scholar 

  13. Bauer DF, McGwin G Jr, Melton SM, George RL, Markert JM. Risk factors for conversion to permanent ventricular shunt in patients receiving therapeutic ventriculostomy for traumatic brain injury. Neurosurgery. 2011;68(1):85–8.

    Article  Google Scholar 

  14. Wen L, Wan S, Zhan RY, Li G, Gong JB, Liu WG, Yang XF. Shunt implantation in a special sub-group of post-traumatic hydrocephalus--patients have normal intracranial pressure without clinical representations of hydrocephalus. Brain Inj. 2009;23(1):61–4.

    Article  CAS  Google Scholar 

  15. Licata C, Cristofori L, Gambin R, Vivenza C, Turazzi S. Post-traumatic hydrocephalus. J Neurosurg Sci. 2001;45(3):141–9.

    CAS  PubMed  Google Scholar 

  16. Xin H, Yun S, Jun X, Liang W, Ye-Lin C, Xiao-Feng Y. Long-term outcomes after shunt implantation in patients with posttraumatic hydrocephalus and severe conscious disturbance. J Craniofac Surg. 2014;25(4):1280–3.

    Article  Google Scholar 

  17. Tribl G, Oder W. Outcome after shunt implantation in severe head injury with post-traumatic hydrocephalus. Brain Inj. 2000;14(4):345–54.

    Article  CAS  Google Scholar 

  18. Brandner S, Thaler C, Lelental N, Buchfelder M, Kleindienst A, Maler JM, Kornhuber J, Lewczuk P. Ventricular and lumbar cerebrospinal fluid concentrations of Alzheimer's disease biomarkers in patients with normal pressure hydrocephalus and posttraumatic hydrocephalus. J Alzheimers Dis. 2014;41(4):1057–62.

    Article  CAS  Google Scholar 

  19. Linnemann M, Tibæk M, Kammersgaard LP. Hydrocephalus during rehabilitation following severe TBI. Relation to recovery, outcome, and length of stay. NeuroRehabilitation. 2014;35(4):755–61.

    PubMed  Google Scholar 

  20. Oliveira MF, Reis RC, Trindade EM, Pinto FC. Evidences in the treatment of idiopathic normal pressure hydrocephalus. Rev Assoc Med Bras. 2015;61(3):258–62.

    Article  Google Scholar 

  21. Oliveira MF, Saad F, Reis RC, Rotta JM, Pinto FC. Programmable valve represents an efficient and safe tool in the treatment of idiopathic normal-pressure hydrocephalus patients. Arq Neuropsiquiatr. 2013;71(4):229–36.

    Article  Google Scholar 

  22. Pereira RM, Suguimoto MT, Oliveira MF, Tornai JB, Amaral RA, Teixeira MJ, Pinto FC. Performance of the fixed pressure valve with antisiphon device SPHERA® in the treatment of normal pressure hydrocephalus and prevention of overdrainage. Arq Neuropsiquiatr. 2015;74:55.

    Article  Google Scholar 

  23. Pinto FC, Saad F, Oliveira MF, Pereira RM, Miranda FL, Tornai JB, Lopes MI, Ribas ES, Valinetti EA, Teixeira MJ. Role of endoscopic third ventriculostomy and ventriculoperitoneal shunt in idiopathic normal pressure hydrocephalus: preliminary results of a randomized clinical trial. Neurosurgery. 2013;72(5):845–53; discussion 853-4.

    Article  Google Scholar 

  24. Zanini MA, de Lima Resende LA, de Souza Faleiros AT, Gabarra RC. Traumatic subdural hygromas: proposed pathogenesis based classification. J Trauma. 2008;64(3):705–13.

    Article  Google Scholar 

  25. Kaen A, Jimenez-Roldan L, Alday R, Gomez PA, Lagares A, Alén JF, Lobato RD. Interhemispheric hygroma after decompressive craniectomy: does it predict posttraumatic hydrocephalus? J Neurosurg. 2010;113(6):1287–93.

    Article  Google Scholar 

  26. Choi I, Park HK, Chang JC, Cho SJ, Choi SK, Byun BJ. Clinical factors for the development of posttraumatic hydrocephalus after decompressive craniectomy. J Korean Neurosurg Soc. 2008;43(5):227–31.

    Article  Google Scholar 

  27. Jiao QF, Liu Z, Li S, Zhou LX, Li SZ, Tian W, You C. Influencing factors for posttraumatic hydrocephalus in patients suffering from severe traumatic brain injuries. Chin J Traumatol. 2007;10(3):159–62.

    PubMed  Google Scholar 

  28. Oh CH, Park CO, Hyun DK, Park HC, Yoon SH. Comparative study of outcomes between shunting after cranioplasty and in cranioplasty after shunting in large concave flaccid cranial defect with hydrocephalus. J Korean Neurosurg Soc. 2008;44(4):211–6.

    Article  Google Scholar 

  29. Pechmann A, Anastasopoulos C, Korinthenberg R, van Velthoven-Wurster V, Kirschner J. Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome. Neuropediatrics. 2015;46(1):5–12.

    Article  Google Scholar 

  30. Fotakopoulos G, Tsianaka E, Siasios G, Vagkopoulos K, Fountas K. Posttraumatic hydrocephalus after decompressive craniectomy in 126 patients with severe traumatic brain injury. J Neurol Surg A Cent Eur Neurosurg. 2015;77(2):88–92.

    Article  Google Scholar 

  31. Pachatouridis D, Alexiou GA, Zigouris A, Michos E, Drosos D, Fotakopoulos G, Voulgaris S. Management of hydrocephalus after decompressive craniectomy. Turk Neurosurg. 2014;24(6):855–8.

    PubMed  Google Scholar 

  32. Ding J, Guo Y, Tian H. The influence of decompressive craniectomy on the development of hydrocephalus: a review. Arq Neuropsiquiatr. 2014;72(9):715–20.

    Article  Google Scholar 

  33. Jeon SW, Choi JH, Jang TW, Moon SM, Hwang HS, Jeong JH. Risk factors associated with subdural hygroma after decompressive craniectomy in patients with traumatic brain injury : a comparative study. J Korean Neurosurg Soc. 2011;49(6):355–8.

    Article  Google Scholar 

  34. Coelho F, Oliveira AM, Paiva WS, Freire FR, Calado VT, Amorim RL, Neville IS, de Andrade AF, Bor-Seng-Shu E, Anghinah R, Teixeira MJ. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty. Neuropsychiatr Dis Treat. 2014;10:695–701.

    PubMed  PubMed Central  Google Scholar 

  35. Bor-Seng-Shu E, Paiva WS, Figueiredo EG, Fujimoto Y, de Andrade AF, Fonoff ET, Teixeira MJ. Posttraumatic refractory intracranial hypertension and brain herniation syndrome: cerebral hemodynamic assessment before decompressive craniectomy. Biomed Res Int. 2013;2013:750809.

    Article  Google Scholar 

  36. Bor-Seng-Shu E, Figueiredo EG, Fonoff ET, Fujimoto Y, Panerai RB, Teixeira MJ. Decompressive craniectomy and head injury: brain morphometry, ICP, cerebral hemodynamics, cerebral microvascular reactivity, and neurochemistry. Neurosurg Rev. 2013;36(3):361–70.

    Article  Google Scholar 

  37. Bor-Seng-Shu E, Figueiredo EG, Amorim RL, Teixeira MJ, Valbuza JS, de Oliveira MM, Panerai RB. Decompressive craniectomy: a meta-analysis of influences on intracranial pressure and cerebral perfusion pressure in the treatment of traumatic brain injury. J Neurosurg. 2012;117(3):589–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinto, F.C.G., de Oliveira, M.F. (2018). Posttraumatic Hydrocephalus: Relevance, Mechanisms, Treatment, and Outcome. In: Anghinah, R., Paiva, W., Battistella, L., Amorim, R. (eds) Topics in Cognitive Rehabilitation in the TBI Post-Hospital Phase. Springer, Cham. https://doi.org/10.1007/978-3-319-95376-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95376-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95374-8

  • Online ISBN: 978-3-319-95376-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics