Skip to main content

Locomotor Movement-Pattern Analysis as an Individualized Objective and Quantitative Approach in Psychiatry and Psychopharmacology: Clinical and Theoretical Implications

  • Chapter
  • First Online:

Abstract

Psychiatry is the only medical specialty lacking clinically applicable biomarkers for objective quantification of the existing pathology and the subsequent treatment effects at a single-subject level. Based on an original (internationally patented) method for evaluating movement patterns, we have introduced in the everyday clinical practice an easy-to-perform objective and quantitative approach to the individual motor behavior in psychiatric and neurological patients. It involves equilibriometric quantification of the head and body movements during the execution of specific locomotor tasks. For the last 20 years, we have gradually collected a large database from cross-sectional and longitudinal investigations of more than 1000 patients and healthy controls. Comparative analyses have revealed trans-diagnostic similarities among different psychiatric and neurological categories as well as significant within-diagnostic dissimilarities, which can help to separate out subgroups within the same nosological category. Pharmacological challenges and treatment effects permit objective quantification of the normalizing or denormalizing effects of various psychotropic drugs on the individual motor behavior. The computerized locomotor movement-pattern analysis suggests that hyperlocomotion and tachykinesia could be viewed as objectively measurable biomarkers of increased physiological and emotional arousal, supposedly attributable to dopaminergic hyperactivity and/or amygdala hyperactivation, while hypolocomotion and bradykinesia indicate the opposite neurobiological and psychological dysregulation. Analogies with the prominent role of locomotor measures in some well-known animal models of psychiatric disorders advocate for a promising objective translational research in the so far over-subjective fields of psychiatry and clinical psychopharmacology. Most important clinical and theoretical implications of the new approach are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Claussen C-F. Cranio-corpo-graphy: 30 years of equilibriometric measurements of spatial and temporal head, neck and trunk movements. In: Claussen C-F, Haid CT, Hofferberth B, editors. Equilibrium research, clinical equilibriometry and modern treatment. Amsterdam: Elsevier; 2000. p. 249–59.

    Google Scholar 

  2. Claussen CF, Constantinescu L. Equilibriometric investigations. In: De Sa Souza SG, Claussen C-F, editors. Modern concepts in neurootology. Mumbai: Prajakta Arts; 1997. p. 143–87.

    Google Scholar 

  3. Haralanov S, Claussen C-F, Schneider D, Haralanov L, Carvalho C, Stamenov B. Cranio-corpo-graphy: possibilities and perspectives in the field of clinical equilibriometry. Neurol Balkanica. 1997;1:30–4.

    Google Scholar 

  4. Haralanov S, Claussen C-F, Haralanova E, Milushev E. Computerized ultrasonographic cranio-corpo-graphy for equilibriometric measurements in multiple sclerosis patients. J Indian Soc Otolaryngol. 2002;1(1):22–4.

    Google Scholar 

  5. Haralanov S, Claussen C-F, Schneider D. Evaluation of subjective vestibular symptoms: a problem on the borderline between neurootology and psychiatry. Neurootol Newslett. 2000;5(1):7–11.

    Google Scholar 

  6. Haralanov S, Haralanov L. Vertigo, tinnitus and hallucinations due to head trauma. In: Claussen C-F, Kirtane MV, editors. Vertigo, nausea, tinnitus and hypoacusia due to head and neck trauma. Amsterdam: Elsevier Science Publishers; 1991. p. 363–6.

    Google Scholar 

  7. Haralanov S, Haralanov L. Vertigo as a hallucinatory phenomenon due to temporal lobe pathology in psychiatric and neurologic patients. In: Claussen C-F, Kirtane M, Schneider D, editors. Vertigo, tinnitus, nausea and hypoacusia due to central disequilibrium. Hamburg: Medicin + Pharmacie Dr. Werner Rudat & Co.; 1994. p. 563–6.

    Google Scholar 

  8. Haralanov S, Shkodrova D. Psychiatric aspects of vertigo: clinical and therapeutical problems. In: Claussen C-F, Kirtane M, Schneider D, editors. Vertigo, tinnitus, nausea and hypoacusia due to central disequilibrium. Hamburg: Medicin + Pharmacie Dr. Werner Rudat & Co.; 1994. p. 557–61.

    Google Scholar 

  9. Claussen C-F, Haralanov S. Cranio-corpo-graphy for objective monitoring of alcohol withdrawal syndrome. Neurootol Newslett. 2002;6(1):60–1.

    Google Scholar 

  10. Haralanov S, Milushev E, Claussen C-F. Stato-kinetic disturbances in multiple sclerosis patients: objective recording and quantitative assessment by computerized ultrasound cranio-corpo-graphy. Bulg Neurol. 2001;1(2):50–1.

    Google Scholar 

  11. Haralanov S, Milushev E, Claussen C-F. Neuromotor and psychomotor disturbances in schizophrenic patients: objective recording and quantitative assessment by computerized ultrasound cranio-corpo-graphy. Bulg Neurol. 2001;1(2):55–6.

    Google Scholar 

  12. Haralanov S, Claussen C-F, Haralanova E, Shkodrova D. Computerized ultrasonographic cranio-corpo-graphy and abnormal psychomotor activity in psychiatric patients. Int Tinnitus J. 2002;8(2):72–6.

    PubMed  Google Scholar 

  13. Haralanov S, Milushev E, Haralanova E, Claussen C-F. Computerized ultrasound cranio-corpo-graphy for objective and quantitative monitoring of the physical therapy and rehabilitation in patients with movement disorders. Phys Med Rehab Health. 2003;3:15–8.

    Google Scholar 

  14. Haralanov S, Milushev E, Haralanova E, Claussen C-F, Shkodrova D. Computerized ultrasound cranio-corpo-graphy for objective and quantitative monitoring of neuroleptics-induced parkinsonism in schizophrenia. In: Chalmanov V, Tsonev V, editors. Actual problems of parkinsonism. Sofia: Academic Publishing House “Prof Marin Drinov”; 2003. p. 170–4.

    Google Scholar 

  15. Haralanov S, Haralanova E, Shkodrova D. Objectively measurable equilibriometric dysmetria in schizophrenia: a novel approach to the disease process in the brain. Bulg Neurol Psychiatr Pract. 2007;2:16–23.

    Google Scholar 

  16. Haralanov S, Terziivanova P. Contrasting psychomotor dysfunctions in unipolar and bipolar depression: objective quantification by computerized ultrasound cranio-corpo-graphy. Bulg Neurol Psychiatr Pract. 2010;1:18–24.

    Google Scholar 

  17. Haralanov S, Terziivanova P. Subclinical psychomotor heterogeneity in unipolar and bipolar depression: objective quantification by computerized ultrasound cranio-corpo-graphy. Bulg Neurol Psychiatr Pract. 2010;3–4:22–31.

    Google Scholar 

  18. Haralanov S, Terziivanova P. Subclinical bipolarity in unipolar depression: objective revealing by computerized ultrasonographic cranio-corpo-graphy. Bulg Med. 2011;1(3–4):14–25.

    Google Scholar 

  19. Jenkov V, Haralanov S. Use of computerized ultrasonic cranio-corpo-graphy for monitoring of alcohol withdrawal syndrome by measurement of the equilibrium. C R Acad Bulg Sci. 2013;66(8):1139–44.

    Google Scholar 

  20. Jenkov V, Haralanov S. Use of ultrasonic cranio-corpo-graphy for assessment of alcohol withdrawal. J Biomed Clin Res. 2014;7(Suppl 1):16.

    Google Scholar 

  21. Milushev E, Haralanov S, Rangelov T. Ultrasound cranio-corpo-graphy: prospects and perspectives. Bulg Neurol. 2015;16(Suppl 1):105–6.

    Google Scholar 

  22. Haralanov S, Claussen C-F, Shkodrova D, Haralanov L, Schneider D, Carvalho C. Cranio-corpo-graphy in schizophrenic patients. In: Claussen C-F, Sakata E, Itoh A, editors. Vertigo, nausea, tinnitus and hearing loss in central and peripheral vestibular diseases. Amsterdam: Elsevier; 1995. p. 325–8.

    Google Scholar 

  23. Haralanov S, Shkodrova D, Claussen C-F. Cranio-corpo-graphic findings in schizophrenic patients. Neurootol Newslett. 2002;6(1):27–31.

    Google Scholar 

  24. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247–59.

    Article  PubMed  Google Scholar 

  25. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21(5):313–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130(Pt 3):786–98.

    Article  PubMed  Google Scholar 

  27. Woollacott MH, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16:1–14.

    Article  PubMed  Google Scholar 

  28. Shkodrova D, Claussen C-F. Vertigo and anxiety: a problem on the borderline between neurootology and psychiatry. Neurootol Newslett. 2002;6(1):94–8.

    Google Scholar 

  29. Shkodrova D, Claussen C-F, Haralanov S. Vertigo and panic disorder: clinical aspects. Neurootol Newslett. 2002;6(2):100–4.

    Google Scholar 

  30. Shkodrova D, Haralanov S, Claussen C-F, Tanchev O, Carvalho C. Anxiety disorders and vertigo complaints. In: Regional Meeting of the World Federation of Societies of Biological Psychiatry (Abstracts), Porto; 1994. p. 98.

    Google Scholar 

  31. Tanchev O, Claussen C-F, Haralanov S. Functional vertigo and masked depression. Neurootol Newslett. 2000;5(1):12–6.

    Google Scholar 

  32. Tanchev O, Haralanov S, Claussen C-F, Carvalho C. Masked depression: neurootological aspects. In: Regional Meeting of the World Federation of Societies of Biological Psychiatry (Abstracts), Porto; 1994; p. 51.

    Google Scholar 

  33. Haralanov S, Haralanova E. Dissecting schizotaxia from psychosis in schizophrenia: clinical and theoretical implications. Arch Philos Ment Health. 2009;1:63–4.

    Google Scholar 

  34. Haralanov S, Haralanova E, Shkodrova D. Equilibriometric ataxia in schizophrenia: clinical and theoretical implications. Neurol Psychiatry. 2007;3:13–6.

    Google Scholar 

  35. Haralanov S, Haralanova E, Shkodrova D, Claussen C-F. Cerebellar signs of the schizophrenic process: clinical and theoretical implications. Neurol Psychiatry. 2009;1:18–21.

    Google Scholar 

  36. Dzhupanov G, Haralanov S, Terziivanova P, Haralanova E. Objectively measurable equilibriometric locomotor ataxia in schizophrenia. Eur Psychiatry. 2017;41:S810.

    Article  Google Scholar 

  37. Shkodrova D, Haralanova E, Haralanov S. Objective cerebellar signs in schizophrenia: motor and balance coordination deficits. Bulg Neurol Psychiatr Pract. 2007;4:18–24.

    Google Scholar 

  38. Haralanova E, Haralanov S, Shkodrova D. Schizophrenia, schizotaxia and cerebellar ataxia: the history of multidisciplinary studies bridging the gap between psychiatric and neurological disorders. In: Abstract Book of the 3rd Balkan Congress on the History of Medicine, 2007; p. 51.

    Google Scholar 

  39. Haralanov S, Shkodrova D, Haralanova E, Claussen C-F. Schizophrenia as a movement disorder: evidence from cranio-corpo-graphic movement-pattern analyses. In: Abstracts of the 36th International Danube Symposium for Neurological Sciences and Continuing Education. Sofia; 2004; p. 72.

    Google Scholar 

  40. Angyal A, Blackman N. Vestibular reactivity in schizophrenia. Arch Neurol Psychiatr. 1940;44:611–20.

    Article  Google Scholar 

  41. Angyal A, Sherman N. Postural reactions to vestibular stimulation in schizophrenic and normal subjects. Am J Psychiatry. 1942;98:857–62.

    Article  Google Scholar 

  42. Brahu TS. Audiometric and vestibular function studies in schizophrenia. In: Claussen C-F, Kirtane MV, editors. Optokinetic tests. Hamburg: Dr Werner Rudat & Co.; 1983. p. 37–47.

    Google Scholar 

  43. Fitzgerald G, Stengel E. Vestibular reactivity to caloric stimulation in schizophrenics. J Ment Sci. 1945;91:93–100.

    Article  Google Scholar 

  44. Meehl PE. Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. J Personal Disord. 1990;4:1–99.

    Article  Google Scholar 

  45. Ornitz EM. Vestibular dysfunction in schizophrenia and childhood autism. Compr Psychiatry. 1970;11(2):159–73.

    Article  CAS  PubMed  Google Scholar 

  46. Haralanova E, Haralanov S, Shkodrova D. History of the schizotaxia concept: a model for the integration of neurosciences. Int Ann Hist Gen Theory Med “Asclepius”. 2006;19:179–85.

    Google Scholar 

  47. Lenzenweger MF. Schizotaxia, schizotypy, and schizophrenia: Paul E. Meehl’s blueprint for the experimental psychopathology and genetics of schizophrenia. J Abnorm Psychol. 2006;115(2):195–200.

    Article  PubMed  Google Scholar 

  48. Meehl PE. Schizotaxia, schizotypy, schizophrenia. Am Psychol. 1962;17(12):827–38.

    Article  Google Scholar 

  49. Haralanov S, Terziivanova P. Psychomotor and dopaminergic bipolarity in unipolar depression: experimental findings, conceptual analysis and implications for treatment strategies. In: Columbus AM, editor. Advances in psychology research, vol. 107. New York: Nova Science Publishers; 2015. p. 145–60.

    Google Scholar 

  50. Claussen C-F, Haralanov S. Method for evaluating a movement pattern. US Patent 6,473,717; 2002.

    Google Scholar 

  51. Haralanov S, Milushev E, Haralanova E, Shkodrova D, Claussen CF. Objective quantification of equilibriometric coordination deficits in multiple sclerosis patients. In: Abstracts of the 36th International Danube Symposium for Neurological Sciences and Continuing Education. Sofia. 2004. p. 62–3.

    Google Scholar 

  52. Haralanov S, Haralanova E, Shkodrova D. Endophenotypes and neurodynamic biomarkers in schizophrenia. Neurol Psychiatry. 2007;2:14–8.

    Google Scholar 

  53. Haralanov S, Haralanova E, Shkodrova D, Svinarov DA. Analysis of movement patterns as a pharmacodynamic biomarker in schizophrenia. Ther Drug Monit. 2011;33(4):482.

    Google Scholar 

  54. Haralanov S, Haralanova E, Shkodrova D, Svinarov DA. Equilibriometric movement pattern analysis as a pharmacodynamic biomarker in schizophrenia. Basic Clin Pharmacol Toxicol. 2011;109(Suppl.1):40.

    Google Scholar 

  55. Haralanov S, Haralanova E, Shkodrova D, Svinarov DA, Claussen C-F. Objective equilibriometric approach in schizophrenia: methodological aspects. Psychiatry. 2009;25(1):17–29.

    Google Scholar 

  56. Haralanova E, Haralanov S, Shkodrova D. Objectively measurable pharmacodynamic biomarker for antipsychotic treatment monitoring in schizophrenia. Bulg Neurol Psychiatr Pract. 2007;3:18–22.

    Google Scholar 

  57. Haralanova E, Haralanov S, Shkodrova D, Claussen C-F. Objective equilibriometric pharmacodynamic monitoring of the maintenance treatment in schizophrenia. Neurol Psychiatry. 2008;4:19–23.

    Google Scholar 

  58. Haralanova E, Haralanov S, Shkodrova D, Svinarov D. Pharmacodynamic biomarkers for optimizing antipsychotic pharmacotherapy in schizophrenia. Neurol Psychiatry. 2011;1:28–32.

    Google Scholar 

  59. Haralanova E, Haralanov S, Shkodrova D. The role of cerebellum in the theory of schizophrenia. Neurol Psychiatry. 2006;2:20–3.

    Google Scholar 

  60. Haralanov S, Terziivanova P. Psychomotor disturbances in bipolar and unipolar depression. J Czech Slovak Psychiatry. 2008;104(Suppl.2):1230.

    Google Scholar 

  61. Terziivanova P, Haralanov S. Latent bipolarity in unipolar depression: objectively measurable manic components in the psychomotor activity and reactivity. In: XVIII Annual Conference of the Bulgarian Psychiatric Association. Hyssar; 2010; p. 35–7.

    Google Scholar 

  62. Terziivanova P, Haralanov S. Latent bipolarity in unipolar depression: experimental findings, conceptual analysis and implications for treatment strategies. Folia Med. 2014;56(4):282–8.

    Article  Google Scholar 

  63. Haralanov S, Shkodrova D, Claussen C-F, Haralanova E. Objective recording and quantitative analysis of psychomotor disturbances by cranio-corpo-graphy. Psychiatr News. 2000;8:1–8.

    Google Scholar 

  64. Haralanov S, Haralanova E, Shkodrova D, Svinarov DA. Objective control of the maintenance treatment in schizophrenia. Neurol Psychiatry. 2008;3:20–4.

    Google Scholar 

  65. Haralanov S, Shkodrova D, Haralanova E. Objective monitoring of antipsychotic treatment. Eur Neuropsychopharmacol. 2007;17(Suppl.3):S143.

    Article  Google Scholar 

  66. Haralanov S, Shkodrova D, Haralanova E, Claussen C-F. Objective and quantitative monitoring of antipsychotic treatment by cranio-corpo-graphy. Psychiatr News. 2001;9:1–5.

    Google Scholar 

  67. Haralanov S, Svinarov D, Shkodrova D, Haralanova E, Claussen C-F. A concept for pharmacokinetic/pharmacodynamic monitoring in schizophrenic patients. Int J Neuropsychopharmacol. 2004;7(Suppl.1):S431.

    Google Scholar 

  68. Haralanova E, Haralanov S, Shkodrova D. Pharmacotherapy and pharmacodynamic biomarkers in psychiatry. Neurol Psychiatry. 2007;1:20–3.

    Google Scholar 

  69. Svinarov DA, Haralanov S, Claussen C-F. A concept for PK/PD monitoring in psychiatry. Ther Drug Monit. 2003;25(4):532.

    Google Scholar 

  70. Svinarov DA, Haralanov S, Claussen C-F. Joint pharmacokinetic/pharmacodynamic (PK/PD) monitoring in psychiatry: a concept and pilot study in schizophrenic patients treated with Risperidon-depot. Clin Exp Pharmacol Physiol. 2004;31(Suppl):A58.

    Google Scholar 

  71. Terziivanova P, Haralanov S. Quantitative monitoring of psychomotor activity during pharmacological treatment of depressive episodes. J Biomed Clin Res. 2014;7(Suppl 1):15.

    Google Scholar 

  72. Terziivanova P, Haralanov S, Haralanova E, Dzhupanov G. Objective quantification of psychomotor dynamics during pharmacological treatment of bipolar depression. Eur Psychiatry. 2017;41:S212–3.

    Article  Google Scholar 

  73. Lally J, MacCabe JH. Personalised approaches to pharmacotherapy for schizophrenia. Br J Psychiatry Adv. 2016;22:78–86.

    Google Scholar 

  74. Wium-Andersen IK, Vinberg M, Kessing LV, McIntyre RS. Personalized medicine in psychiatry. Nord J Psychiatry. 2017;71(1):12–9.

    Article  PubMed  Google Scholar 

  75. Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M. The new field of ‘precision psychiatry’. BMC Med. 2017;15(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Insel TR. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry. 2014;171:395–7.

    Article  PubMed  Google Scholar 

  77. Bernard JA, Mittal VA. Updating the research domain criteria: the utility of a motor dimension. Psychol Med. 2015;45(13):2685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garvey MA, Cuthbert BN. Developing a motor systems domain for the NIMH RDoC program. Schizophr Bull. 2017;43(5):935–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hengartner MP, Lehmann SN. Why psychiatric research must abandon traditional diagnostic classification and adopt a fully dimensional scope: two solutions to a persistent problem. Front Psych. 2017;8:101.

    Article  Google Scholar 

  80. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9.

    Article  CAS  PubMed  Google Scholar 

  81. Song M, Yang Z, Sui J, Jiang T. Biological subtypes bridge diagnoses and biomarkers: a novel research track for mental disorders. Neurosci Bull. 2017;33(3):351–3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic biomarkers for schizophrenia. Int J Mol Sci. 2017;18(4):733.

    Article  CAS  Google Scholar 

  83. Gargiulo ÁJM, Gargiulo MML, Gargiulo API, Martin GMG, de Gargiulo AIL, Mesones-Arroyo HL, Gargiulo PÁ. Biological markers in psychiatry and its relation with translational approaches: brief historical review. In: Gargiulo PA, Mesones Arroyo HL, editors. Psychiatry and neuroscience update. Switzerland: Springer International Publishing; 2015. p. 311–33.

    Chapter  Google Scholar 

  84. Terziivanova P, Haralanov S. Epistemological and methodological significance of quantitative studies of psychomotor activity for the explanation of clinical depression. J Eval Clin Pract. 2012;18:1151–5.

    Article  PubMed  Google Scholar 

  85. Terziivanova P, Haralanov S. Psychomotor retardation and agitation in clinical depression. In: Stoyanov D, editor. Psychopathology: theory, perspectives and future approaches. New York: Nova Science Publishers; 2013. p. 283–98.

    Google Scholar 

  86. Bervoets C, Docx L, Sabbe B, Vermeylen S, Van Den Bossche MJ, Morsel A, Morrens M. The nature of the relationship of psychomotor slowing with negative symptomatology in schizophrenia. Cogn Neuropsychiatry. 2014;19(1):36–46.

    Article  PubMed  Google Scholar 

  87. Chapman JJ, Roberts JA, Nguyen VT, Breakspear M. Quantification of free-living activity patterns using accelerometry in adults with mental illness. Sci Rep. 2017;7:43174.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cheniaux E, Filgueiras A, Silva R de A, Silveira LA, Nunes AL, Landeira-Fernandez J. Increased energy/activity, not mood changes, is the core feature of mania. J Affect Disord. 2014;152–4:256–61.

    Article  Google Scholar 

  89. Docx L, Sabbe BG, Koning J, Mentzel TQ, van Harten PN, Morrens M. Instrumental registration of psychomotor symptoms in schizophrenia: has the time come to use the technique in clinical practice? Tijdschr Psychiatr. 2015;57(2):148–53.

    CAS  PubMed  Google Scholar 

  90. Kim J, Nakamura T, Kikuchi H, Sasaki T, Yamamoto Y. Co-variation of depressive mood and locomotor dynamics evaluated by ecological momentary assessment in healthy humans. PLoS One. 2013;8(9):e74979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Machado-Vieira R, Luckenbaugh DA, Ballard ED, Henter ID, Tohen M, Suppes T, Zarate CA Jr. Increased activity or energy as a primary criterion for the diagnosis of bipolar mania in DSM-5: findings from the STEP-BD study. Am J Psychiatry. 2017;174(1):70–6.

    Article  PubMed  Google Scholar 

  92. Perry W, McIlwain M, Kloezeman K, Henry BL, Minassian A. Diagnosis and characterization of mania: quantifying increased energy and activity in the human behavioral pattern monitor. Psychiatry Res. 2016;240:278–83.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Perry W, Minassian A, Henry B, Kincaid M, Young JW, Geyer MA. Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res. 2010;178(1):84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Walther S. Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res. 2015;233(3):293–8.

    Article  PubMed  Google Scholar 

  95. Walther S, Morrens M. Editorial: psychomotor symptomatology in psychiatric illnesses. Front Psychiatry. 2015;6:81.

    PubMed  PubMed Central  Google Scholar 

  96. Abboud R, Noronha C, Diwadkar VA. Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry. 2017;44:125–33.

    Article  CAS  PubMed  Google Scholar 

  97. Ayehu M, Shibre T, Milkias B, Fekadu A. Movement disorders in neuroleptic-naïve patients with schizophrenia spectrum disorders. BMC Psychiatry. 2014;14:280.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bernard JA, Mittal VA. Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry Schizophr. 2014;5:1–14.

    Google Scholar 

  99. Bracht T, Heidemeyer K, Koschorke P, Horn H, Razavi N, Wopfner A, Strik W, Walther S. Comparison of objectively measured motor behavior with ratings of the motor behavior domain of the Bern Psychopathology Scale (BPS) in schizophrenia. Psychiatry Res. 2012;198(2):224–9.

    Article  PubMed  Google Scholar 

  100. Bracht T, Schnell S, Federspiel A, Razavi N, Horn H, Strik W, Wiest R, Dierks T, Müller TJ, Walther S. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia. Schizophr Res. 2013;143(2–3):269–76.

    Article  PubMed  Google Scholar 

  101. Callaway DA, Perkins DO, Woods SW, Liu L, Addington J. Movement abnormalities predict transitioning to psychosis in individuals at clinical high risk for psychosis. Schizophr Res. 2014;159(2–3):263–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Compton MT, Fantes F, Wan CR, Johnson S, Walker EF. Abnormal movements in first-episode, nonaffective psychosis: dyskinesias, stereotypies, and catatonic-like signs. Psychiatry Res. 2015;226(1):192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dean DJ, Samson AT, Newberry R, Mittal VA. Motion energy analysis reveals altered body movement in youth at risk for psychosis. Schizophr Res. 2017; [Epub ahead of print].

    Google Scholar 

  104. Hirjak D, Northoff G, Thomann PA, Kubera KM, Wolf RC. Genuine motor phenomena in schizophrenic psychoses: theoretical background and definition of context. Nervenarzt. 2017. [Epub ahead of print].

    Google Scholar 

  105. Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: a dimensional step towards an underappreciated domain. Schizophr Res. 2015;169(1–3):217–33.

    Article  PubMed  Google Scholar 

  106. Hirjak D, Wolf RC, Wilder-Smith EP, Kubera KM, Thomann PA. Motor abnormalities and basal ganglia in schizophrenia: evidence from structural magnetic resonance imaging. Brain Topogr. 2015;28(1):135–52.

    Article  PubMed  Google Scholar 

  107. Indic P, Salvatore P, Maggini C, Ghidini S, Ferraro G, Baldessarini RJ, Murray G. Scaling behavior of human locomotor activity amplitude: association with bipolar disorder. PLoS One. 2011;6(5):e20650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Koning JP, Kahn RS, Tenback DE, Van Schelven LJ, Van Harten PN. Movement disorders in nonpsychotic siblings of patients with nonaffective psychosis. Psychiatry Res. 2011;188:133–7.

    Article  PubMed  Google Scholar 

  109. Lallart E, Jouvent R, Herrmann FR, Perez-Diaz F, Lallart X, Beauchet O, Allali G. Gait control and executive dysfunction in early schizophrenia. J Neural Transm (Vienna). 2014;121(4):443–50.

    Article  CAS  Google Scholar 

  110. Minassian A, Henry BL, Geyer MA, Paulus MP, Young JW, Perry W. The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord. 2009;120(1–3):200–6.

    Google Scholar 

  111. Minassian A, Young JW, Cope ZA, Henry BL, Geyer MA, Perry W. Amphetamine increases activity but not exploration in humans and mice. Psychopharmacology. 2016;233(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  112. Mittal VA. Cross-cutting advancements usher in a new era for motor research in psychosis. Schizophr Bull. 2016;42(6):1322–5.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mittal VA, Bernard JA, Northoff G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull. 2017;43(5):949–55.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Morrens M, Docx L, Walther S. Beyond boundaries: in search of an integrative view on motor symptoms in schizophrenia. Front Psych. 2014;5:145.

    Google Scholar 

  115. Ohashi K, Yamamoto Y, Teicher MH. Locomotor micro-activities associated with therapeutic responses in patients with seasonal affective disorders. Integr Med Int. 2015;1(3):151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Peralta V, Campos MS, De Jalon EG, Cuesta MJ. Motor behavior abnormalities in drug-naive patients with schizophrenia spectrum disorders. Mov Disord. 2010;25(8):1068–76.

    Article  PubMed  Google Scholar 

  117. Peralta V, Cuesta MJ. Motor abnormalities: from neurodevelopmental to neurodegenerative through “functional” (neuro)psychiatric disorders. Schizophr Bull. 2017;43(5):956–71.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sano W, Nakamura T, Yoshiuchi K, Kitajima T, Tsuchiya A, Esaki Y, Yamamoto Y, Iwata N. Enhanced persistency of resting and active periods of locomotor activity in schizophrenia. PLoS One. 2012;7(8):e43539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schiffman J. Motor issues in the clinical high risk phase of psychosis. Schizophr Bull. 2017;43(5):937–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schiffman J, Sorensen HJ, Maeda J, Mortensen EL, Victoroff J, Hayashi K, Michelsen NM, Ekstrom M, Mednick S. Childhood motor coordination and adult schizophrenia spectrum disorders. Am J Psychiatry. 2009;166(9):1041–7.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Turner R, Schiavetto A. The cerebellum in schizophrenia: a case of intermittent ataxia and psychosis – clinical, cognitive, and neuroanatomical correlates. J Neuropsychiatry Clin Neurosci. 2004;16:400–8.

    Article  PubMed  Google Scholar 

  122. van Harten PN, Bakker PR, Mentzel CL, Tijssen MA, Tenback DE. Movement disorders and psychosis, a complex marriage. Front Psych. 2015;5:190.

    Google Scholar 

  123. van Harten PN, Walther S, Kent JS, Sponheim SR, Mittal VA. The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neurosci Biobehav Rev. 2017;80:476–87.

    Article  PubMed  Google Scholar 

  124. Varambally S, Venkatasubramanian G, Thirthalli J, Janakiramaiah N, Gangadhar BN. Cerebellar and other neurological soft signs in antipsychotic-naive schizophrenia. Acta Psychiatr Scand. 2006;114(5):352–6.

    Article  CAS  PubMed  Google Scholar 

  125. Waddington JL, O’Tuathaigh CM. Modelling the neuromotor abnormalities of psychotic illness: putative mechanisms and systems dysfunction. Schizophr Res. 2017; [Epub ahead of print].

    Google Scholar 

  126. Walther S, Horn H, Razavi N, Koschorke P, Muller TJ, Strik W. Quantitative motor activity differentiates schizophrenia subtypes. Neuropsychobiology. 2009;60:80–6.

    Article  PubMed  Google Scholar 

  127. Walther S, Koschorke P, Horn H, Strik W. Objectively measured motor activity in schizophrenia challenges the validity of expert ratings. Psychiatry Res. 2009;169:187–90.

    Article  PubMed  Google Scholar 

  128. Walther S, Ramseyer F, Horn H, Strik W, Tschacher W. Less structured movement patterns predict severity of positive syndrome, excitement, and disorganization. Schizophr Bull. 2014;40(3):585–91.

    Article  PubMed  Google Scholar 

  129. Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017;43(5):982–92.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Walther S, Stegmayer K, Horn H, Rampa L, Razavi N, Muller TJ, Strik W. The longitudinal course of gross motor activity in schizophrenia – within and between episodes. Front Psych. 2015;6:10.

    Google Scholar 

  131. Whitty PF, Owoeye O, Waddington JL. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull. 2009;35(2):415–24.

    Article  PubMed  Google Scholar 

  132. Young JW, Minassian A, Geyer MA. Locomotor profiling from rodents to the clinic and back again. Curr Top Behav Neurosci. 2016;28:287–303.

    Article  CAS  PubMed  Google Scholar 

  133. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry. 1999;46(7):908–20.

    Article  CAS  PubMed  Google Scholar 

  134. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93(18):9985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bernard JA, Mittal VA. Dysfunctional activation of the cerebellum in schizophrenia: a functional neuroimaging meta-analysis. Clin Psychol Sci. 2015;3(4):545–66.

    Article  PubMed  Google Scholar 

  136. Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–8.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Maier-Hein KH, Thomann PA. Neurological soft signs in recent-onset schizophrenia: focus on the cerebellum. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;60:18–25.

    Article  Google Scholar 

  138. Ho BC, Mola C, Andreasen N. Cerebellar dysfunction in neuroleptic-naïve schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55(12):1146–53.

    Article  PubMed  Google Scholar 

  139. Levit-Binnun N, Davidovitch M, Golland Y. Sensory and motor secondary symptoms as indicators of brain vulnerability. J Neurodev Disord. 2013;5(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, Stip E. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2013;39(4):797–806.

    Article  PubMed  Google Scholar 

  141. Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6:10.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mittal VA, Dean DJ, Bernard JA, Orr JM, Pelletier-Baldelli A, Carol EE, Gupta T, Turner J, Leopold DR, Robustelli BL, Millman ZB. Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull. 2014;40(6):1204–15.

    Article  PubMed  Google Scholar 

  143. Mouchet-Mages S, Rodrigo S, Cachia A, Mouaffak F, Olie JP, Meder JF, Oppenheim C, Krebs MO. Correlations of cerebello-thalamo-prefrontal structure and neurological soft signs in patients with first-episode psychosis. Acta Psychiatr Scand. 2011;123(6):451–8.

    Article  CAS  PubMed  Google Scholar 

  144. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46:703–11.

    Article  CAS  PubMed  Google Scholar 

  145. Schmahmann JD. The role of cerebellum in affect and psychosis. J Neurolinguistics. 2000;13:189–214.

    Article  Google Scholar 

  146. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    Article  PubMed  Google Scholar 

  147. Shinn AK, Baker JT, Lewandowski KE, Öngür D, Cohen BM. Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Front Hum Neurosci. 2015;9:134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Wiser AK, Andreasen NC, O’Leary DS, Watkins GL, Ponto LLB, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause “cognitive dysmetria” in schizophrenia. Neuroreport. 1998;8:1895–9.

    Article  Google Scholar 

  149. Albayrak Y, Akyol ES, Beyazyüz M, Baykal S, Kuloglu M. Neurological soft signs might be endophenotype candidates for patients with deficit syndrome schizophrenia. Neuropsychiatr Dis Treat. 2015;11:2825–31.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chan RCK, Cui HR, Chu MY, Zhang TH, Wang Y, Wang YI, Li Z, Lui SSY, Wang JJ, Cheung EFC. Neurological soft signs precede the onset of schizophrenia: a study of individuals with schizotypy, ultra-high-risk individuals, and first-onset schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2017; [Epub ahead of print].

    Google Scholar 

  151. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017;22(5):666–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Henry BL, Minassian A, Young JW, Paulus MP, Geyer MA, Perry W. Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev. 2010;34(8):1296–306.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Geyer MA, Russo PV, Masten VL. Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav. 1986;25(1):277–88.

    Article  CAS  PubMed  Google Scholar 

  154. Ossenkopp K, Kavaliers M, Sanberg PR. Measuring movement and locomotion: from invertebrates to humans. New York: Chapman & Hall; 1999.

    Google Scholar 

  155. Krebs-Thomson K, Paulus MP, Geyer MA. Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology. 1998;18(5):339–51.

    Article  CAS  PubMed  Google Scholar 

  156. Lehmann-Masten VD, Geyer MA. Spatial and temporal patterning distinguishes the locomotor activating effect of dizocilpine and phencyclidine in rats. Neuropharmacology. 1991;30(6):629–36.

    Article  CAS  PubMed  Google Scholar 

  157. Maksimovic M, Vekovischeva OY, Aitta-aho T, Korpi ER. Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PLoS One. 2014;9(6):e100188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2017; [Epub ahead of print].

    Google Scholar 

  159. Kluge F, Gaßner H, Hannink J, Pasluosta C, Klucken J, Eskofier BM. Towards mobile gait analysis: concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors (Basel). 2017;17(7):E1522.

    Article  Google Scholar 

  160. Lynall RC, Zukowski LA, Plummer P, Mihalik JP. Reliability and validity of the protokinetics movement analysis software in measuring center of pressure during walking. Gait Posture. 2017;52:308–11.

    Article  PubMed  Google Scholar 

  161. Müller B, Ilg W, Giese MA, Ludolph N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS One. 2017;12(4):e0175813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Picerno P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: a review of methodological approaches. Gait Posture. 2017;51:239–46.

    Article  PubMed  Google Scholar 

  163. Stark DE, Kumar RB, Longhurst CA, Wall DP. The quantified brain: a framework for mobile device-based assessment of behavior and neurological function. Appl Clin Inform. 2016;7(2):290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haralanov, S., Haralanova, E., Milushev, E., Shkodrova, D. (2019). Locomotor Movement-Pattern Analysis as an Individualized Objective and Quantitative Approach in Psychiatry and Psychopharmacology: Clinical and Theoretical Implications. In: Gargiulo, P., Mesones Arroyo, H. (eds) Psychiatry and Neuroscience Update . Springer, Cham. https://doi.org/10.1007/978-3-319-95360-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95360-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95359-5

  • Online ISBN: 978-3-319-95360-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics