Skip to main content

Convex Polytopes and Unimodular Triangulations

  • Chapter
  • First Online:
Binomial Ideals

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 279))

  • 2486 Accesses

Abstract

The triangulation of a convex polytope is one of the most important topics in the classical theory of convex polytopes. In this chapter the modern treatment of triangulations of convex polytopes is systematically developed. In Section 4.1 we recall fundamental materials on convex polytopes and summarize basic facts without their proofs. The highlight of Chapter 4 is Section 4.2, where unimodular triangulations of convex polytopes are introduced and studied in the frame of initial ideals of toric ideals of convex polytopes. Furthermore, the normality of convex polytopes is discussed. Finally, in Section 4.3, we study the Lawrence lifting of a configuration, which is a powerful tool for computing the Graver basis of a toric ideal. Furthermore, unimodular polytopes, which form a distinguished subclass of the class of normal polytopes, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer, D., Popescu, S., Sturmfels, B.: Syzygies of unimodular Lawrence ideals. J. Reine Angew. Math. 534, 169–186 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Billera, L.J., Lee, C.W.: A proof of the sufficiency of McMullen’s conditions for f-vectors of simplicial convex polytopes. J. Combin. Theory Ser. A 31, 237–255 (1981)

    Article  MathSciNet  Google Scholar 

  3. Brøndsted, A.: An Introduction to Convex Polytopes. Graduate Texts in Mathematics, vol. 90. Springer, Berlin (1983)

    Google Scholar 

  4. Bruns, W., Gubeladze, J.: Polytopes, Rings, and K-Theory. Springer Monographs in Mathematics. Springer, Dordrecht (2009)

    Google Scholar 

  5. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  6. Danilov, V.I.: The geometry of toric varieties. Russ. Math. Surv. 33(2), 97–154 (1978)

    Article  MathSciNet  Google Scholar 

  7. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Modern Birkhäuser Classics, Reprint of the 1994 edn. Birkhäuser, Boston (2008)

    Google Scholar 

  8. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003)

    Chapter  Google Scholar 

  9. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics. Springer, New York (2010)

    Google Scholar 

  10. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe (1992)

    MATH  Google Scholar 

  11. Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 318–337 (1972)

    Article  MathSciNet  Google Scholar 

  12. Hochster, M.: Cohen–Macaulay rings, combinatorics, and simplicial complexes. In: McDonald, B.R., Morris, R.A. (eds.) Ring Theory II. Lecture Notes in Pure and Applied Mathematics, vol. 26. M. Dekker, New York (1977)

    Google Scholar 

  13. Lee, C.W.: Regular triangulations of convex polytopes. In: Applied Geometry and Discrete Mathematics, The Victor Klee Festschrift. DIMACS Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 443–456. American Mathematical Society, Providence (1991)

    Google Scholar 

  14. Oda, T.: Convex Bodies and Algebraic Geometry. Springer, New York (1988)

    MATH  Google Scholar 

  15. Ohsugi, H.: A geometric definition of combinatorial pure subrings and Gröbner bases of toric ideals of positive roots. Comment. Math. Univ. St. Pauli. 56, 27–44 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Ohsugi, H., Herzog, J., Hibi, T.: Combinatorial pure subrings. Osaka J. Math. 37, 745–757 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Ohsugi, H., Hibi, T.: A normal (0,  1)-polytope none of whose regular triangulations is unimodular. Discret. Comput. Geom. 21, 201–204 (1999)

    Article  MathSciNet  Google Scholar 

  18. Ohsugi, H., Hibi, T.: Toric ideals generated by quadratic binomials. J. Algebra 218, 509–527 (1999)

    Article  MathSciNet  Google Scholar 

  19. Ohsugi, H., Hibi, T.: Non-very ample configurations arising from contingency tables. Ann. Inst. Stat. Math. 62, 639–644 (2010)

    Article  MathSciNet  Google Scholar 

  20. Reisner, G.A.: Cohen–Macaulay quotients of polynomial rings. Adv. Math. 21, 30–49 (1976)

    Article  MathSciNet  Google Scholar 

  21. Schrijver, A.: Theory of linear and integer programming. In: Wiley-Interscience Series in Discrete Mathematics. A Wiley-Interscience Publication/Wiley, Chichester (1986)

    MATH  Google Scholar 

  22. Stanley, R.P.: The upper bound conjecture and Cohen–Macaulay rings. Stud. Appl. Math. 54, 135–142 (1975)

    Article  MathSciNet  Google Scholar 

  23. Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238 (1980)

    Article  MathSciNet  Google Scholar 

  24. Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics, vol. 41, 2nd edn. Birkhäuser, Boston (1996)

    Google Scholar 

  25. Sturmfels, B.: Gröbner bases of toric varieties. Tohoku Math. J. 43, 249–261 (1991)

    Article  MathSciNet  Google Scholar 

  26. Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  27. Sturmfels, B., Thomas, R.R.: Variation of cost functions in integer programming. Math. Program. 77, 357–387 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herzog, J., Hibi, T., Ohsugi, H. (2018). Convex Polytopes and Unimodular Triangulations. In: Binomial Ideals. Graduate Texts in Mathematics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-95349-6_4

Download citation

Publish with us

Policies and ethics