Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs

  • Khara GriegerEmail author
  • Rune Hjorth
  • Alexis Wells Carpenter
  • Frederick Klaessig
  • Emilie Lefevre
  • Claudia Gunsch
  • Kullapa Soratana
  • Amy E. Landis
  • Fern Wickson
  • Danail Hristozov
  • Igor Linkov


Ensuring the sustainable development and use of NZVI for in situ remediation requires the incorporation of a multitude of factors and criteria, including those related to technology performance, cost, potential impacts to the environment and human health, as well as ethical, social, and legal concerns. This chapter provides an overview of these factors in order to help guide the sustainable development of NZVI. Among other main results, we find that while there are promising findings regarding its performance and effectiveness as a remediation technique, there are also growing concerns regarding its impacts to the environment and health. To date, most of this research has focused on the potential (eco)toxicological effects of NZVI with limited research on broader issues such as social or ethical implications. In fact, the social implications of NZVI, including the ability for a range of stakeholders and members of the public to be active participants in decision-making processes, have either been minimal or nonexistent. We also find that marketplace limitations appear to be serious obstacles to ensuring the sustainable development and use of NZVI as an environmental remediation technology, including questions pertaining to the validity of its cost-competitiveness. In order to balance the potential benefits, risks, and uncertainty characteristics of NZVI, there are a number of decision support frameworks and risk analysis tools which may be applied, including multi-criteria decision analysis, life cycle assessment, as well as diverse risk characterization or screening tools (e.g., NanoRiskCat). While several of these frameworks and tools may be suited for NZVI in theory, very few of them have been applied to NZVI in practice. In conclusion, these results indicate that while NZVI has potential to reduce environmental contaminants through in situ remediation, its development and use, particularly at field-scale sites, has not proceeded in the most sustainable manner possible thus far. In light of this, we provide specific recommendations to help ensure the sustainable development and use of NZVI, including recommendations specific for diverse stakeholder groups such as researchers, academics, industry, and government officials.


Nanoscale zerovalent iron Sustainability Benefit-risk tradeoffs Human health impact Ecological impact Decision support frameworks 


  1. Abbaspour, K., Schulin, R., Schläppi, E., & Flühler, H. (1996). A Bayesian approach for incorporating uncertainty and data worth in environmental projects. Environmental Modeling & Assessment, 1, 151–158.CrossRefGoogle Scholar
  2. Adams WM (2006) The future of sustainability: Re-thinking environment and development in the twenty-first century. Report of the IUCN Renowned Thinkers Meeting, 29–31 January 2006.Google Scholar
  3. Ampiah-Bonney, R. J., Tyson, J. F., & Lanza, G. R. (2007). Phytoextraction of arsenic from soil by Leersia Oryzoides. International Journal of Phytoremediation, 9, 31–40.CrossRefGoogle Scholar
  4. An, Y., Li, T., Jin, Z., Dong, M., Xia, H., & Wang, X. (2010). Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresource Technology, 101, 9825–9828.CrossRefGoogle Scholar
  5. Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chanéac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., & Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42, 6730–6735.CrossRefGoogle Scholar
  6. Back, P. E. (2007). A model for estimating the value of sampling programs and the optimal number of samples for contaminated soil. Environmental Geology, 52, 573–585.CrossRefGoogle Scholar
  7. Back, P., Rosén, L., & Norberg, T. (2007). Value of information analysis in remedial investigations. Ambio, 36, 486–493.CrossRefGoogle Scholar
  8. Bardos, P., Nathanail, J., & Pope, B. (2002). General principles for remedial approach selection. Land Contamination and Reclamation, 10, 137–160.CrossRefGoogle Scholar
  9. Bare, J., Hofstetter, P., Pennington, D., & Haes, H. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6), 319–326.CrossRefGoogle Scholar
  10. Bare, J. C., Norris, G. A., Pennington, D. W., & McKone, T. (2003). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology, 6(3–4), 49–78.Google Scholar
  11. Barnes, R. J., van der Gast, C. J., Riba, O., Lehtovirta, L. E., Prosser, J. I., Dobson, P. J., & Thompson, I. P. (2010). The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 184, 73–80.CrossRefGoogle Scholar
  12. Belton, V., & Stewart, T. (2011). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer, Academic Publishers.Google Scholar
  13. Brouwer, D. H. (2012). Control banding approaches for nanomaterials. Annals of Occupational Hygiene, 56, 506–514.Google Scholar
  14. Carlsson, C., Ehrenberg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Lindholm, P., Merkuryeva, G., Riissanen, T., & Ventre, A. (1992). Consensus in distributed soft environments. European Journal of Operational Research, 61, 165–185.CrossRefGoogle Scholar
  15. Chang, M., & Kang, H. (2009). Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health, 44, 576–582.CrossRefGoogle Scholar
  16. Chen, P. J., Su, C. H., Tseng, C. Y., Tan, S. W., & Cheng, C. H. (2011a). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Marine Pollution Bulletin, 63, 339–346.CrossRefGoogle Scholar
  17. Chen, J., Xiu, Z., Lowry, G. C., & Alvarez, P. J. J. (2011b). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001.CrossRefGoogle Scholar
  18. Chen, P. J., Wu, W. L., & Wu, K. C. (2013). The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Research, 47, 3899–3909.CrossRefGoogle Scholar
  19. Cox, L. (1999). Adaptive spatial sampling of contaminated soil. Risk Analysis, 19, 1059–1069.CrossRefGoogle Scholar
  20. Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112–125.CrossRefGoogle Scholar
  21. Crimi, M. L., & Siegrist, R. L. (2003). Geochemical effects on metals following permanganate oxidation of DNAPLs. Ground Water, 41, 458–469.CrossRefGoogle Scholar
  22. Critto, A., Cantarella, L., Carlon, C., Giove, S., Petruzze, G., & Marcomini, A. (2006). Decision support-oriented selection of remediation technologies to rehabilitate contaminated sites. Integrated Environmental Assessment and Management, 2, 273–285.Google Scholar
  23. Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82, 1675–1682.CrossRefGoogle Scholar
  24. Dakins, M. E., Toll, J. E., Small, M. J., & Brand, K. P. (1996). Risk-based environmental remediation: Bayesian Monte Carlo analysis and the expected value of sample information. Risk Analysis, 16, 67–79.CrossRefGoogle Scholar
  25. Danish Ministry of the Environment. (2011). NanoRiskCat-a conceptual decision support tool for nanomaterials. Copenhagen, Denmark, 269 pp.Google Scholar
  26. Davis, M., Long, T. C., Shatkin, J. A., Wang, A., Graham, J. A., Gwinn, M., & Ranalli, B. (2010). Comprehensive environmental assessment. Nanomaterial case studies: Nanoscale titanium dioxide in water treatment and in topical sunscreen. U.S. Environmental Protection Agency (USEPA).Google Scholar
  27. DEFRA. (2011). A risk/benefit approach to the application of iron nanoparticles. U.K. Department for Environment, Food and Rural Affairs.Google Scholar
  28. Delgado, A., Kjølberg, K. L., & Wickson, F. (2011). Public engagement coming of age: From theory to practice in STS encounters with nanotechnology. Public Understanding of Science, 20(6), 826–845.CrossRefGoogle Scholar
  29. Design for Sustainability Program. (2001). IdeMat Online. Delft: Delft University of Technology.Google Scholar
  30. Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.CrossRefGoogle Scholar
  31. Dillard, J., Dujon, V., & King, M. C. (2009). Understanding the social dimension of sustainability. New York: Routledge.Google Scholar
  32. Dreyer, L. C., Niemann, A. L., & Hauschild, M. Z. (2003). Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99. International Journal of Life Cycle Analysis, 8(4), 191–200.CrossRefGoogle Scholar
  33. Duuren-Stuurman, B., Vink, S., Brouwer, D., Kroese, D., Heussen, H., Verbist, K., Telemans, E., Niftrik, M. V., & Fransman, W. (2011). Stoffenmanager nano: Description of the conceptual control banding model. Zeist: Netherlands Organisation for Applied Scientific Research (TNO).Google Scholar
  34. Edmiston, P. L., Osborne, C., Reinbold, K. P., Pickett, D. C., & Underwood, L. A. (2011). Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—For in situ remediation of trichloroethylene. Remediation Winter, 22, 105–123.CrossRefGoogle Scholar
  35. Eisenberg, D., Grieger, K. D., Hristozov, D., Bates, M., & Linkov, I. (2015). Risk assessment, life cycle assessment, and decision methods for nanomaterials. In Nanomaterials in the Environment. Reston: American Society of Civil Engineers.Google Scholar
  36. Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business. Oxford: Capstone Publishing.Google Scholar
  37. Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.CrossRefGoogle Scholar
  38. El-Temsah, Y. S., & Joner, E. J. (2012a). Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (NZVI) in soil. Chemosphere, 89, 76–82.CrossRefGoogle Scholar
  39. El-Temsah, Y. S., & Joner, E. J. (2012b). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.CrossRefGoogle Scholar
  40. El-Temsah, Y. S., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron (NZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92, 131–137.CrossRefGoogle Scholar
  41. Environmental Defense (ED) and Dupont. (2007a). Nano risk framework. Washington DC: Environmental Defense – Dupont Nano Partnership.Google Scholar
  42. Environmental Defense (ED) and Dupont. (2007b). Nanomaterial risk assessment worksheet: DuPont light stabilizer for use as a polymer additive. Washington DC: Environmental Defense – Dupont Nano Partnership.Google Scholar
  43. Environmental Defense (ED) and Dupont. (2007c). Nanomaterial risk assessment worksheet: Incorporation of single and multiwalled carbon nano tubes (CNTs) into polymer nanocomposites by melt processing. Washington DC: Environmental Defense – Dupont Nano Partnership.Google Scholar
  44. Environmental Defense (ED) and Dupont. (2007d). Nanomaterial risk assessment worksheet: Zero valent nano sized iron nanoparticles (NZVI) for environmental remediation. Washington DC: Environmental Defense – Dupont Nano Partnership.Google Scholar
  45. Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86, 802–808.CrossRefGoogle Scholar
  46. Fajardo, C., Saccà, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (NZVI) particles. Chemosphere, 93, 1077–1083.CrossRefGoogle Scholar
  47. Freeze, R. A., James, B., Massmann, J., Sperling, T., & Smith, L. (1992). Hydrogeological decision analysis: 4. The concept of data worth and its use in the development of site investigation strategies. Ground Water, 30, 574–588.CrossRefGoogle Scholar
  48. Friis, A. K., Heron, G., Albrechtsen, H. J., Udell, K. S., & Bjerg, P. L. (2006). Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer. Journal of Contaminant Hydrology, 88, 219–234.CrossRefGoogle Scholar
  49. Frischknecht, R., & Jungbluth, N. (2004). SimaPro database manual. The ETH-ESU 96 Libraries version 2.1. ESU-services.Google Scholar
  50. Ghauch, A. (2008). Rapid removal of flutriafol in water by zero-valent iron powder. Chemosphere, 71, 816–826.CrossRefGoogle Scholar
  51. Giove, S., Brancia, A., Satterstrom, F. K., & Linkov, I. (2009). Decision support systems and environment: Role of MCDA. In A. Marcomini, G. W. Suter II, & A. Critto (Eds.), Decision support systems for risk-based management of contaminated sites. Boston: Springer, US.Google Scholar
  52. Grieger, K., Hansen, S. F., & Baun, A. (2009). The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 3(3), 1–12.CrossRefGoogle Scholar
  53. Grieger, K., Wickson, F., Andersen, H. B., & Renn, O. (2012a). Improving risk governance of emerging technologies through public engagement: The neglected case of nano-remediation? International Journal of Emerging Technologies and Society, 10, 61–78.Google Scholar
  54. Grieger, K., Linkov, I., Hansen, S. F., & Baun, A. (2012b). Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 6(2), 196–212.CrossRefGoogle Scholar
  55. Grieger, K., Laurent, A., Miseljic, M., Christensen, F., Baun, A., & Olsen, S. (2012c). Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: Have lessons been learned from previous experience with chemicals? Journal of Nanoparticle Research, 14(7), 1–23.CrossRefGoogle Scholar
  56. Grieger, K., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010a). Environmental benefits and risks of zero-valent iron nanoparticles (NZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.CrossRefGoogle Scholar
  57. Grieger, K., Baun, A., & Owen, R. (2010b). Redefining risk research priorities for nanomaterials. Journal of Nanoparticle Research, 2(2), 383–392.CrossRefGoogle Scholar
  58. Hansen, S. F., Jensen, K. A., & Baun, A. (2014). NanoRiskCat: A conceptual tool for categorization and communication of exposure potentials and hazard of nanomaterials in consumer products. Journal of Nanoparticle Research, 16, 2195.CrossRefGoogle Scholar
  59. Hauschild, M. Z. (2005). Assessing environmental impacts in a life-cycle perspective. Environmental Science & Technology, 39(4), 81A–88A.CrossRefGoogle Scholar
  60. He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.CrossRefGoogle Scholar
  61. Higgins, M. R., & Olson, T. M. (2009). Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environmental Science & Technology, 43(24), 9432–9438.CrossRefGoogle Scholar
  62. Höck, J., Epprecht, T., Hofmann, H., Höhner, K., Krug, H., Lorenz, C., Limbach, L., Gehr, P., Nowack, B., Riediker, M., Schirmer, K., Schmid, B., Som, C., Stark, W., Studer, C., Ulrich, A., Götz, N. V., Wengert, S., & Wick, P. (2010). Guidelines on the precautionary matrix for synthetic nanomaterials. Federal Office of Public Health and Federal Office for the Environment.Google Scholar
  63. Höck J., Behra R., Bergamin L., Bourqui-Pittet M., Bosshard C., Epprecht T., Furrer V., Frey S., Gautschi M., Hofmann H., Höhener K., Hungerbühler K., Knauer K., Krug H., Limbach L., Gehr P., Nowack B., Riediker M., Schirmer K., Schmid K., Som C., Stark W., Suarez Merino B., Ulrich A., von Götz N., Walser T., Wengert S., Wick P., Studer C.: Guidelines on the Precautionary Matrix for Syn-thetic Nanomaterials. Federal Office of Public Health and Federal Office for the Environment, Berne 2018, Version 3.1Google Scholar
  64. Hoehener, K., & Hoeck, J. (2013). Deliverable D2.6 draft (m30) consolidated framework for EHS of manufactured nanomaterials. ERA-NET SIINN; safe implementation of innovative nanoscience and nanotechnology.Google Scholar
  65. Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409, 3578–3594.CrossRefGoogle Scholar
  66. Institute of Environmental Sciences. (2012). CMLCA software program. Leiden University, RA Leiden, The NetherlandsGoogle Scholar
  67. International Organization for Standardization (ISO). (2006). ISO 14040:2006, Environmental management, life cycle assessment – Principles and framework.Google Scholar
  68. James, B. R., & Gorelick, S. M. (1994). When enough is enough: The worth of monitoring data in aquifer remediation design. Water Resources Research, 30, 3499–3513.CrossRefGoogle Scholar
  69. Jeon, J. R., Murugesan, K., Nam, I. H., & Chang, Y. S. (2013). Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 31, 246–256.CrossRefGoogle Scholar
  70. Jiamjitrpanich, W., Parkpian, P., Polprasert, C., Laurent, F., & Kosanlavit, R. (2012). The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and NZVI-contaminated soil. Journal of Environmental Science and Health, 47, 1506–1513.CrossRefGoogle Scholar
  71. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.CrossRefGoogle Scholar
  72. Kadar, E., Dyson, O., Handy, R. D., & Al-Subiai, S. N. (2013). Are reproduction impairments of free spawning marine invertebrates exposed to zero-valent nano-iron associated with dissolution of nanoparticles? Nanotoxicology, 7, 135–143.CrossRefGoogle Scholar
  73. Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 17(12), 1823–1831.Google Scholar
  74. Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43, 4555–4560.CrossRefGoogle Scholar
  75. Keller, A. A., Garner, K., Miller, R. J., & Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7(8), e43983. Scholar
  76. Keum, Y. S., & Li, Q. X. (2005). Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 39, 2280–2286.CrossRefGoogle Scholar
  77. Khanna, V., Bakshi, B. R., & Lee, L. J. (2008). Carbon nanofiber production. Journal of Industrial Ecology, 12(3), 394–410.CrossRefGoogle Scholar
  78. Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., & Linkov, I. (2005). Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1, 95–108.CrossRefGoogle Scholar
  79. Kim, L. Y., Changha, L., Love, D. C., Sedlak, D. L., Yoon, J., & Nelson, K. L. (2011). Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Technology, 45, 6978–6984.CrossRefGoogle Scholar
  80. Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43, 3824–3830.CrossRefGoogle Scholar
  81. Kirschling, T., Gregory, K., Minkley, N., Lowry, G., & Tilton, R. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations. Environmental Science & Technology, 44, 3474–3480.CrossRefGoogle Scholar
  82. Kumar, N., Omoregie, E. O., Rose, J., Masion, A., Lloyd, J. R., Diels, L., & Bastiaens, L. (2013). Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 51, 64–72.CrossRefGoogle Scholar
  83. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.CrossRefGoogle Scholar
  84. Lemming, G., Hauschild, M., & Bjerg, P. (2010). Life cycle assessment of soil and groundwater remediation technologies: Literature review. The International Journal of Life Cycle Assessment, 15(1), 115–127.CrossRefGoogle Scholar
  85. Lemming, G., Chambon, J. C., Binning, P. B., & Bjerg, P. L. (2012). Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation. Journal of Environmental Management, 112, 392–403.CrossRefGoogle Scholar
  86. Li, X. Q., & Zhang, W. X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.CrossRefGoogle Scholar
  87. Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72, 684–692.CrossRefGoogle Scholar
  88. Li, Z., Greden, K., Alvarez, P., Gregory, K., & Lowry, G. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero-valent iron (NZVI) to E. coli. Environmental Science & Technology, 44, 3462–3467.CrossRefGoogle Scholar
  89. Lien, H. L., Jhuo, Y. S., & Chen, L. H. (2007). Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environmental Engineering Science, 24, 21–30.CrossRefGoogle Scholar
  90. Lin, K., Chang, N., & Chuang, T. (2008). Fine structure characterization of zerovalent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Science and Technology of Advanced Materials, 9, 025015.CrossRefGoogle Scholar
  91. Linkov, I., & Moberg, E. (2012). Multi-criteria decision analysis: Environmental applications and case studies. Boca Raton: CRC Press.Google Scholar
  92. Linkov, I., Satterstrom, F. K., Kiker, G., Batchelor, C., Bridges, T., & Ferguson, E. (2006a). From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environment International, 32, 1072–1093.CrossRefGoogle Scholar
  93. Linkov, I., Satterstrom, F. K., Kiker, G., Seager, T. P., Bridges, T., Gardner, K. H., Rogers, S. H., Belluck, D. A., & Meyer, A. (2006b). Multicriteria decision analysis: A comprehensive decision approach for management of contaminated sediments. Risk Analysis, 26, 61–78.CrossRefGoogle Scholar
  94. Linkov, I., Satterstrom, F., Steevens, J., Ferguson, E., & Pleus, R. (2007). Multi-criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research, 9, 543–554.CrossRefGoogle Scholar
  95. Linkov, I., Loney, D., Cormier, S., Satterstrom, F. K., & Bridges, T. (2009). Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Science of the Total Environment, 407(19), 5199–5205.CrossRefGoogle Scholar
  96. Linkov, I., Welle, P., Loney, D., Tkachuk, A., Canis, L., Kim, J. B., & Bridges, T. (2011). Use of multicriteria decision analysis to support weight of evidence evaluation. Risk Analysis, 31, 1211–1225.CrossRefGoogle Scholar
  97. Lloyd, S. M., Lave, L. B., & Matthews, H. S. (2005). Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environmental Science & Technology, 39(5), 1384–1392.CrossRefGoogle Scholar
  98. Ma, X., Gurung, A., & Deng, Y. (2013). Phytotoxicity and uptake of nanoscale zero-valent iron (NZVI) by two plant species. Science of the Total Environment, 443, 844–849.CrossRefGoogle Scholar
  99. Marsalek, B., Jancula, D., Marsalkova, E., Mashlan, M., Safarova, K., Tucek, J., & Zboril, R. (2012). Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environmental Science & Technology, 46, 2316–2323.CrossRefGoogle Scholar
  100. Mueller, N. C., Braun, J., Bruns, J., ČernÍk, R. P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.CrossRefGoogle Scholar
  101. Müller, N.C., & Nowack, B. (2010). Nano zero valent iron – THE solution for water and soil remediation? ObservatoryNANO focus report.Google Scholar
  102. Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chemistry, 12, 114–122.CrossRefGoogle Scholar
  103. National Renewable Energy Laboratory. (2012). U.S. life cycle inventory database. Golden, CO, USAGoogle Scholar
  104. O’Carroll, D. M., Sleep, B. E., Karol, M., Boparai, H. K., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.CrossRefGoogle Scholar
  105. Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S., Waite, S., Friesl-Hanl, W., Marschner, B., & Müller, I. (2009). Developing decision support tools for the selection of “gentle” remediation approaches. Science of the Total Environment, 407, 6132–6142.CrossRefGoogle Scholar
  106. Oracle. (2008). Oracle crystal ball. The Decision Table Tool.Google Scholar
  107. Osterwalder, N., Capello, C., Hungerbühler, K., & Stark, W. (2006). Energy consumption during nanoparticle production: How economic is dry synthesis? Journal of Nanoparticle Research, 8(1), 1–9.CrossRefGoogle Scholar
  108. Ostiguy, C., Riediker, M., Triolet, J., Troisfontaines, P., & Vernez, D. (2010). Development of a specific control banding tool for nanomaterials. French Agency for Food, Environmental and Occupational Health & Safety.Google Scholar
  109. Otero-González, L., García-Saucedo, C., Field, J. A., & Sierra-Álvarez, R. (2013). Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere, 93, 1201–1206.CrossRefGoogle Scholar
  110. Paik, S. Y., Zalk, D. M., & Swuste, P. (2008). Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Annals of Occupational Hygiene, 52, 419–428.Google Scholar
  111. Palisade Corporation. (2010). @Risk Industrial. Risk analysis software. ITHACA, NY, USAGoogle Scholar
  112. Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.CrossRefGoogle Scholar
  113. PE International. (2011). GaBi 5. Life cycle assessment modeling software. Leinfelden-Echterdingen, GermanyGoogle Scholar
  114. Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43, 195–200.CrossRefGoogle Scholar
  115. Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect ofparticle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.CrossRefGoogle Scholar
  116. PRé Consultants. (2000). Eco-indicator 99. A damage oriented method for life cycle impact assessment.Google Scholar
  117. PRé Consultants. (2013). SimaPro 8. LCA software.Google Scholar
  118. Riediker, M., Ostiguy, C., Triolet, J., Troisfontaine, P., Vernez, D., Bourdel, G., Thieriet, N., & Cadene, A. (2012). Development of a control banding tool for nanomaterials. Journal of Nanomaterials, 2012, 8.CrossRefGoogle Scholar
  119. Sacca, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2013a). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (NZVI) on soil organisms. Chemosphere, 104, 184–189.CrossRefGoogle Scholar
  120. Sacca, M. L., Fajardo, C., Nande, M., & Martin, M. (2013b). Effects of nano zero-valent iron on klebsiella oxytoca and stress response. Environmental Microbiology, 66, 806–812.Google Scholar
  121. Saleh, N., Kim, H., Phenrat, T., Matyjaszewksi, K., Lowry, G. V., & Tilton, R. D. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.CrossRefGoogle Scholar
  122. Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.CrossRefGoogle Scholar
  123. Sexton, K., & Linder, S. H. (2014). Integrated assessment of risk and sustainability in the context of regulatory decision making. Environmental Science & Technology, 48, 1409–1418.CrossRefGoogle Scholar
  124. Shah, V., Dobiasova, P., Baldrian, P., Nerud, F., Kumar, A., & Seal, S. (2010). Influence of iron and copper NP powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 178, 1141–1145.CrossRefGoogle Scholar
  125. Shatkin, J. A. (2008). Nanotechnology: Health and environmental risks. Boca Raton: Taylor & Francis.CrossRefGoogle Scholar
  126. Shatkin, J. A. (2009a). Investigating the life-cycle risks of a nanomaterial in a coating using nano LCRA. Society for risk analysis annual meeting. Symposium M4-I, Baltimore.Google Scholar
  127. Shatkin, J. A. (2009b). Risk analysis for nanotechnology: State of the science and implications. Washington, DC: US Department of Agriculture.Google Scholar
  128. Soratana, K., & Marriott, J. (2010). Increasing innovation in home energy efficiency: Monte Carlo simulation of potential improvements. Energy and Buildings, 42(6), 828–833.CrossRefGoogle Scholar
  129. Soratana, K., Harper, W. F., & Landis, A. E. (2012). Microalgal biodiesel and the renewable fuel standard's greenhouse gas requirement. Energy Policy, 46(0), 498–510.CrossRefGoogle Scholar
  130. Soratana, K., Khanna, V., & Landis, A. E. (2013). Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels. Applied Energy, 112(0), 194–204.CrossRefGoogle Scholar
  131. Stephenson, J. B. (2010). EPA’s estimated costs to remediate existing sites exceed current funding levels, and more sites are expected to be added to the National Priorities List. US Government Accountability Office.
  132. Suttinun, O., Luepromchai, E., & Müller, R. (2013). Cometabolism of trichloroethylene: Concepts, limitations and available strategies for sustained biodegradation. Reviews in Environmental Science and Biotechnology, 12, 99–114.CrossRefGoogle Scholar
  133. Technical University of Denmark. (2003). Environmental design of industrial products (EDIP) 2003. Lyngby, DenmarkGoogle Scholar
  134. The Centre for Life Cycle Inventories. (2014). Swiss center for life cycle inventories. Ecoinvent Version 3.Google Scholar
  135. The National Institute for Public Health and the Environment (RIVM), Institute of Environmental Sciences (CML), PRé Consultants, Nijmegen, R. U. (2008). ReCiPe. Life cycle impact assessment methodology.Google Scholar
  136. The Royal Society and The Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties- two year review of progress on government actions. Joint academies’ response to the council for science and technology’s call for evidence, London.Google Scholar
  137. Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.CrossRefGoogle Scholar
  138. Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environmental Pollution, 173, 38–46.CrossRefGoogle Scholar
  139. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.CrossRefGoogle Scholar
  140. United States Environmental Protection Agency (US EPA). (2005). US EPA workshop on nanotechnology for site remediation. Washington, DC: US EPA.Google Scholar
  141. US EPA. (2010). Nanomaterial case studies. Nanoscale titanium dioxide in water treatment and topical sunscreen (final), Research Triangle Park.Google Scholar
  142. US EPA. (2012a). Nanomaterial case study. A comparison of multiwalled carbon nanotube and decabromodiphenyl ether flame-retardant coatings applied to upholstery textiles (draft), Research Triangle Park.Google Scholar
  143. US EPA. (2012b). Nanomaterial case study: Nanoscale silver in disinfectant spray (final report), Washington, DC.Google Scholar
  144. US EPA. (2013). Technology innovation and field services division.
  145. US EPA Office of Solid Waste and Emergency Response (OSWER). (2013). The project on emerging nanotechnologies: Selected sites using or testing nanoparticles for remediation.
  146. Utterback, J. M. (1987). Innovation and industrial evolution in manufacturing industries. In B. R. Guile & H. Brooks (Eds.), Technology and global industry: Companies and nations in the world economy (pp. 16–48). Washington: National Academic Press.Google Scholar
  147. Utterback, J. M., & Suarez, F. F. (1993). Innovation, competition, and industry structure. Research Policy, 22(1), 1–21.CrossRefGoogle Scholar
  148. van Duuren-Stuurman, B., Vink, S. R., Verbist, K. J. M., Heussen, H. G. A., Brouwker, D. H., Lroese, D. E. D., van Niftrik, M. F. J., Tielemans, E., & Fransman, W. (2011). Stoffenmanager nano: Description of the conceptual control banding model. Zeist: Netherlands Organisation for Applied Scientific Research (TNO).Google Scholar
  149. van Duuren-Stuurman, B., Vink, S. R., Verbist, K. J. M., Heussen, H. G. A., Brouwker, D. H., Lroese, D. E. D., van Niftrik, M. F. J., Tielemans, E., & Fransman, W. (2012). Stoffenmanager nano version 1.0: Web-based tool for risk prioritization of airborne manufactured nano objects. The Annals of Occupational Hygiene, 56(5), 525–541.Google Scholar
  150. Vegter, J., Lowe, J., & Kasamas, H. (2002). Sustainable management of contaminated land: An overview. Austrian Federal Environment Agency on behalf of CLARINET.Google Scholar
  151. Wender, B. (2013). LCA and responsible innovation of nanotechnology. In School of Sustainable Engineering and the Built Environment, Master of science. Tempe: Arizona State University.Google Scholar
  152. Wickson, F., Gillund, F., & Myhr, A. (2010). Treating nanoparticles with precaution: Recognising qualitative uncertainty in scientific risk assessment. In K. Kjølberg & F. Wickson (Eds.), Nano meets macro (pp. 445–472). Singapore: Pan Stanford Publishing.CrossRefGoogle Scholar
  153. Wiesner, M. R., & Bottero, J. Y. (2011). A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique, 12, 659–668.CrossRefGoogle Scholar
  154. Woller, J. (1996). The basic of Monte Carlo simulations. Lincoln: University of Nebraska-Lincoln Physical Chemistry Lab.Google Scholar
  155. Woodrow Wilson International Center for Scholars. (2014). Project on emerging nanotechnologies.
  156. Wu, D., Shen, Y., Ding, A., Mahmood, Q., Liu, S., & Tu, Q. (2013). Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. Environmental Technology, 34, 2663–2669.CrossRefGoogle Scholar
  157. Xiu, Z., Jin, Z., Li, T., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.CrossRefGoogle Scholar
  158. Yan, W., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ Sci. Processes Impacts, 15, 63–77.CrossRefGoogle Scholar
  159. Yang, Y., Guo, J., & Hu, Z. (2013). Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Research, 47, 6790–6800.CrossRefGoogle Scholar
  160. Zhou, L., Thanh, T. L., Gong, J., Kim, J. H., Kim, E. J., & Chang, Y. S. (2013). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Khara Grieger
    • 1
    Email author
  • Rune Hjorth
    • 2
  • Alexis Wells Carpenter
    • 3
  • Frederick Klaessig
    • 4
  • Emilie Lefevre
    • 3
  • Claudia Gunsch
    • 3
  • Kullapa Soratana
    • 5
    • 6
  • Amy E. Landis
    • 7
  • Fern Wickson
    • 8
  • Danail Hristozov
    • 9
  • Igor Linkov
    • 10
  1. 1.RTI International, Health and Environmental Risk Analysis ProgramResearch Triangle ParkUSA
  2. 2.Department of Environmental EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  4. 4.Pennsylvania Bio Nano Systems, LLCPhiladelphiaUSA
  5. 5.School of Logistics and Supply Chain, Naresuan UniversityPhitsanulokThailand
  6. 6.School of Sustainable Engineering and the Built Environment, Arizona State UniversityTempeUSA
  7. 7.Department of Civil and Environmental EngineeringColorado School of MinesGoldenUSA
  8. 8.GenØk Centre for Biosafety, ForskningsparkenTromsøNorway
  9. 9.University Ca’Foscari VeniceVeniceItaly
  10. 10.Environmental Laboratory, Engineer Research and Development Center, US Army Corps of EngineersVicksburgUSA

Personalised recommendations