Skip to main content

Microbial Perspective of NZVI Applications

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

Nanoscale zero-valent iron (NZVI), due to its small size and high reactivity, is regarded as a promising alternative especially for in situ environmental remediation. There has already been a number of successful in situ contaminant removal/remediation using NZVI. In this context, interactions between NZVI and environmental microorganisms at the contaminated site are inevitable. The high reactivity of NZVI could potentially cause an adverse effect to microorganisms that are involved in environmental restoration. The interactions between NZVI and microorganism may in turn affect NZVI reactivity. Accordingly, it is important to understand the microbial aspects of NZVI applications. This chapter provides an overview of the consequent effect of the interactions between NZVI and microorganisms including the effect of NZVI on microorganisms as well as the effect of microorganisms on NZVI behavior. It specifically focuses on the reported effects of NZVI on microbial survival and activity, as well as several factors causing the complication of toxicity assessment. The prospects of NZVI-enhanced bioremediation is also discussed. Finally, this chapter presents future research needs in furtherance of successful NZVI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleye, A. S., Keller, A. A., Miller, R. J., & Lenihan, H. S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 15, 1–18.

    Article  CAS  Google Scholar 

  • An, Y., Li, T., Jin, Z., Dong, M., Li, Q., & Wang, S. (2009). Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron. The Science of the Total Environment, 407, 5465–5470.

    Article  CAS  Google Scholar 

  • An, Y., Li, T., Jin, Z., Dong, M., Xia, H., & Wang, X. (2010). Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresource Technology, 101, 9825–9828.

    Article  CAS  Google Scholar 

  • Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chaneac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., & Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42, 6730–6735.

    Article  CAS  Google Scholar 

  • Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: Plant-microbe interactions. Current Opinion in Biotechnology, 20, 642–650.

    Article  CAS  Google Scholar 

  • Bae, S., & Lee, W. (2014). Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environmental Science & Technology, 48, 2368–2376.

    Article  CAS  Google Scholar 

  • Basnet, M., Gershanov, A., Wilkinson, K. J., Ghoshal, S., & Tufenkji, N. (2016). Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: Characterization, transport and viability. Environmental Science-Nano, 3, 127–137.

    Article  CAS  Google Scholar 

  • Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90, 640–646.

    Article  CAS  Google Scholar 

  • Calderon, B., & Fullana, A. (2015). Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Research, 83, 1–9.

    Article  CAS  Google Scholar 

  • Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 94, 490–495.

    Article  CAS  Google Scholar 

  • Chaithawiwat, K., Vangnai, A., McEvoy, J. M., Pruess, B., Krajangpan, S., & Khan, E. (2016). Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. The Science of the Total Environment, 565, 857–862.

    Article  CAS  Google Scholar 

  • Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001.

    Article  CAS  Google Scholar 

  • D‘Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.

    Article  CAS  Google Scholar 

  • Davey, M. E., & O‘Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews: MMBR, 64, 847–867.

    Article  CAS  Google Scholar 

  • Dhas, S. P., Shiny, P. J., Khan, S., Mukherjee, A., & Chandrasekaran, N. (2014). Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. Journal of Basic Microbiology, 54, 916–927.

    Article  CAS  Google Scholar 

  • Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., Calder, A., Gajjar, P., Merugu, S., Huang, W., Britt, D. W., McLean, J. E., Johnson, W. P., & Anderson, A. J. (2011). Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 188, 428–435.

    Article  CAS  Google Scholar 

  • Fajardo, C., Ortiz, L. T., Rodriguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86, 802–808.

    Article  CAS  Google Scholar 

  • Fajardo, C., Sacca, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93, 1077–1083.

    Article  CAS  Google Scholar 

  • Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science & Technology, 41, 2636–2642.

    Article  CAS  Google Scholar 

  • Gaboriaud, F., Gee, M. L., Strugnell, R., & Duval, J. F. (2008). Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir: The ACS Journal of Surfaces and Colloids, 24, 10988–10995.

    Article  CAS  Google Scholar 

  • Hachicho, N., Hoffmann, P., Ahlert, K., & Heipieper, H. J. (2014). Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters, 355, 71–77.

    Article  CAS  Google Scholar 

  • Hazen, T. C., Jimenez, L., Lopez de Victoria, G., & Fliermans, C. B. (1991). Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecology, 22, 293–304.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.

    Article  CAS  Google Scholar 

  • He, S. Y., Feng, Y. Z., Ren, H. X., Zhang, Y., Gu, N., & Lin, X. G. (2011). The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments, 11, 1408–1417.

    Article  CAS  Google Scholar 

  • He, D., Ma, J., Collins, R. N., & Waite, T. D. (2016a). Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species. Environmental Science & Technology, 50, 3820–3828.

    Article  CAS  Google Scholar 

  • He, S., Feng, Y., Ni, J., Sun, Y., Xue, L., Feng, Y., Yu, Y., Lin, X., & Yang, L. (2016b). Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 147, 195–202.

    Article  CAS  Google Scholar 

  • Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: Biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.

    Article  CAS  Google Scholar 

  • Holden, P. A., Gardea-Torresdey, J. L., Klaessig, F., Turco, R. F., Mortimer, M., Hund-Rinke, K., Cohen Hubal, E. A., Avery, D., Barcelo, D., Behra, R., Cohen, Y., Deydier-Stephan, L., Ferguson, P. L., Fernandes, T. F., Herr Harthorn, B., Henderson, W. M., Hoke, R. A., Hristozov, D., Johnston, J. M., Kane, A. B., Kapustka, L., Keller, A. A., Lenihan, H. S., Lovell, W., Murphy, C. J., Nisbet, R. M., Petersen, E. J., Salinas, E. R., Scheringer, M., Sharma, M., Speed, D. E., Sultan, Y., Westerhoff, P., White, J. C., Wiesner, M. R., Wong, E. M., Xing, B., Steele Horan, M., Godwin, H. A., & Nel, A. E. (2016). Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environmental Science & Technology, 50, 6124–6145.

    Article  CAS  Google Scholar 

  • Holm, P. E., Nielsen, P. H., Albrechtsen, H. J., & Christensen, T. H. (1992). Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Applied and Environmental Microbiology, 58, 3020–3026.

    CAS  Google Scholar 

  • Ikuma, K., Decho, A. W., & Lau, B. L. (2015). When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Frontiers in Microbiology, 6, 591.

    Article  Google Scholar 

  • Jacobson, K. H., Gunsolus, I. L., Kuech, T. R., Troiano, J. M., Melby, E. S., Lohse, S. E., Hu, D., Chrisler, W. B., Murphy, C. J., Orr, G., Geiger, F. M., Haynes, C. L., & Pedersen, J. A. (2015). Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environmental Science & Technology, 49, 10642–10650.

    Article  CAS  Google Scholar 

  • Jiang, C., Xu, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. The Science of the Total Environment, 530–531, 241–246.

    Article  CAS  Google Scholar 

  • Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170, 482–491.

    Article  CAS  Google Scholar 

  • Joshi, N., Ngwenya, B. T., & French, C. E. (2012). Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of Hazardous Materials, 241–242, 363–370.

    Article  CAS  Google Scholar 

  • Keller, A. A., Garner, K., Miller, R. J., & Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7, e43983.

    Article  CAS  Google Scholar 

  • Khan, S. S., Srivatsan, P., Vaishnavi, N., Mukherjee, A., & Chandrasekaran, N. (2011). Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. Journal of Hazardous Materials, 192, 299–306.

    CAS  Google Scholar 

  • Kim, J. Y., Park, H. J., Lee, C., Nelson, K. L., Sedlak, D. L., & Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Applied and Environmental Microbiology, 76, 7668–7670.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Lee, C., Love, D. C., Sedlak, D. L., Yoon, J., & Nelson, K. L. (2011). Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Technology, 45, 6978–6984.

    Article  CAS  Google Scholar 

  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012a). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 370, 1–10.

    Article  CAS  Google Scholar 

  • Kim, Y. M., Murugesan, K., Chang, Y. Y., Kim, E. J., & Chang, Y. S. (2012b). Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. Journal of Chemical Technology & Biotechnology, 87, 216–224.

    Article  CAS  Google Scholar 

  • Kirschling, T. L., Gregory, K. B., Minkley, E. G., Jr., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology, 44, 3474–3480.

    Article  CAS  Google Scholar 

  • Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O‘Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.

    Article  CAS  Google Scholar 

  • Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O‘Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49, 8648–8656.

    Article  CAS  Google Scholar 

  • Kocur, C. M., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., Boparai, H. K., Edwards, E. A., & O‘Carroll, D. M. (2016). Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent Iron injection. Environmental Science & Technology, 50, 7658–7670.

    Article  CAS  Google Scholar 

  • Koenig, J. C., Boparai, H. K., Lee, M. J., O‘Carroll, D. M., Barnes, R. J., & Manefield, M. J. (2016). Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. Journal of Hazardous Materials, 308, 106–112.

    Article  CAS  Google Scholar 

  • Kotchaplai, P., Khan, E., & Vangnai, A. S. (2017). Membrane alterations in Pseudomonas putida F1 exposed to nanoscale zerovalent iron: Effects of short-term and repetitive nZVI exposure. Environmental Science & Technology, 51, 7804–7813.

    Article  CAS  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions: MPMI, 17, 6–15.

    Article  CAS  Google Scholar 

  • Kumar, N., Omoregie, E. O., Rose, J., Masion, A., Lloyd, J. R., Diels, L., & Bastiaens, L. (2014). Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 51, 64–72.

    Article  CAS  Google Scholar 

  • Laumann, S., Micic, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 50, 70–79.

    Article  CAS  Google Scholar 

  • Le, T. T., Murugesan, K., Kim, E. J., & Chang, Y. S. (2014). Effects of inorganic nanoparticles on viability and catabolic activities of agrobacterium sp. PH-08 during biodegradation of dibenzofuran. Biodegradation, 25, 655–668.

    Article  CAS  Google Scholar 

  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.

    Article  CAS  Google Scholar 

  • Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. The Science of the Total Environment, 565, 889–901.

    Article  CAS  Google Scholar 

  • Lerner, R. N., Lu, Q., Zeng, H., & Liu, Y. (2012). The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Research, 46, 975–985.

    Article  CAS  Google Scholar 

  • Li, X. Q., Brown, D. G., & Zhang, W. X. (2007). Stabilization of biosolids with nanoscale zero-valent iron (nZVI). Journal of Nanoparticle Research, 9, 233–243.

    Article  CAS  Google Scholar 

  • Li, F. B., Li, X. M., Zhou, S. G., Zhuang, L., Cao, F., Huang, D. Y., Xu, W., Liu, T. X., & Feng, C. H. (2010a). Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution, 158, 1733–1740.

    Article  CAS  Google Scholar 

  • Li, Z., Greden, K., Alvarez, P. J., Gregory, K. B., & Lowry, G. V. (2010b). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44, 3462–3467.

    Article  CAS  Google Scholar 

  • Lin, Y. H., Tseng, H. H., Wey, M. Y., & Lin, M. D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. The Science of the Total Environment, 408, 2260–2267.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere, 108, 426–432.

    Article  CAS  Google Scholar 

  • Lv, Y., Niu, Z., Chen, Y., & Hu, Y. (2017). Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain. Water Research, 115, 297–308.

    Article  CAS  Google Scholar 

  • Mace, C. (2006). Controlling groundwater VOCs. (cover story). Pollution Engineering, 38, 24–28.

    CAS  Google Scholar 

  • Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z., Quigg, A., & Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157, 3034–3041.

    Article  CAS  Google Scholar 

  • Mitzel, M. R., & Tufenkji, N. (2014). Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environmental Science & Technology, 48, 2715–2723.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 19, 550–558.

    Article  CAS  Google Scholar 

  • Ortega-Calvo, J. J., Jimenez-Sanchez, C., Pratarolo, P., Pullin, H., Scott, T. B., & Thompson, I. P. (2016). Tactic response of bacteria to zero-valent iron nanoparticles. Environmental Pollution, 213, 438–445.

    Article  CAS  Google Scholar 

  • Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Applied and Environmental Microbiology, 68, 5789–5795.

    Article  CAS  Google Scholar 

  • Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.

    Article  CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009b). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.

    Article  CAS  Google Scholar 

  • Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research International, 25(8), 7157–7169.

    Article  CAS  Google Scholar 

  • Popova, O. B., Sanina, N. M., Likhatskaya, G. N., & Bezverbnaya, I. P. (2008). Effects of copper and cadmium ions on the physicochemical properties of lipids of the marine bacterium Pseudomonas putida IB28 at different growth temperatures. Russian Journal of Marine Biology, 34, 179–185.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Fajardo, C., Nande, M., & Martin, M. (2013). Effects of nano zero-valent iron on Klebsiella oxytoca and stress response. Microbial Ecology, 66, 806–812.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014a). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Fajardo, C., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2014b). Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One, 9, e89677.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Sevcu, A., El-Temsah, Y. S., Joner, E. J., & Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26, 271–281.

    Article  Google Scholar 

  • Shah, V., Dobiasova, P., Baldrian, P., Nerud, F., Kumar, A., & Seal, S. (2010). Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 178, 1141–1145.

    Article  CAS  Google Scholar 

  • Shephard, J. J., Savory, D. M., Bremer, P. J., & McQuillan, A. J. (2010). Salt modulates bacterial hydrophobicity and charge properties influencing adhesion of Pseudomonas aeruginosa (PA01) in aqueous suspensions. Langmuir: The ACS Journal of Surfaces and Colloids, 26, 8659–8665.

    Article  CAS  Google Scholar 

  • Shi, Z., Fan, D., Johnson, R. L., Tratnyek, P. G., Nurmi, J. T., Wu, Y., & Williams, K. H. (2015). Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Journal of Contaminant Hydrology, 181, 17–35.

    Article  CAS  Google Scholar 

  • Shin, K. H., & Cha, D. K. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72, 257–262.

    Article  CAS  Google Scholar 

  • Sieger, C. H. N., Kroon, A. G. M., Batelaan, J. G., & Vanginkel, C. G. (1995). Biodegradation of carboxymethyl celluloses by Agrobacterium Cm-1. Carbohydrate Polymers, 27, 137–143.

    Article  CAS  Google Scholar 

  • Silambarasan, S., & Vangnai, A. S. (2017). Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicology and Environmental Safety, 139, 472–480.

    Article  CAS  Google Scholar 

  • Somers, E., Vanderleyden, J., & Srinivasan, M. (2004). Rhizosphere bacterial signalling: A love parade beneath our feet. Critical Reviews in Microbiology, 30, 205–240.

    Article  CAS  Google Scholar 

  • Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186.

    Article  CAS  Google Scholar 

  • Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513.

    Article  CAS  Google Scholar 

  • Sudheer Khan, S., Bharath Kumar, E., Mukherjee, A., & Chandrasekaran, N. (2011). Bacterial tolerance to silver nanoparticles (SNPs): Aeromonas punctata isolated from sewage environment. Journal of Basic Microbiology, 51, 183–190.

    Article  CAS  Google Scholar 

  • Tabata, K., Kasuya, K. I., Abe, H., Masuda, K., & Doi, Y. (1999). Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. Applied and Environmental Microbiology, 65, 4268–4270.

    CAS  Google Scholar 

  • Thuptimdang, P., Limpiyakorn, T., McEvoy, J., Pruss, B. M., & Khan, E. (2015). Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. Journal of Hazardous Materials, 290, 127–133.

    Article  CAS  Google Scholar 

  • Thuptimdang, P., Limpiyakorn, T., & Khan, E. (2017). Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. Chemosphere, 188, 199–207.

    Article  CAS  Google Scholar 

  • Vangnai, A. S., Takeuchi, K., Oku, S., Kataoka, N., Nitisakulkan, T., Tajima, T., & Kato, J. (2013). Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 79, 7241–7248.

    Article  CAS  Google Scholar 

  • Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., & Vishnivetskaya, T. (1997). The deep cold biosphere: Facts and hypothesis. FEMS Microbiology Reviews, 20, 277–290.

    Article  CAS  Google Scholar 

  • Wang, Q., Kang, F., Gao, Y., Mao, X., & Hu, X. (2016a). Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity. Scientific Reports, 6, 21379.

    Article  CAS  Google Scholar 

  • Wang, S., Chen, S., Wang, Y., Low, A., Lu, Q., & Qiu, R. (2016b). Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnology Advances, 34, 1384–1395.

    Article  CAS  Google Scholar 

  • Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44, 131–140.

    Article  CAS  Google Scholar 

  • Xie, Y., & Cwiertny, D. M. (2010). Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environmental Science & Technology, 44, 8649–8655.

    Article  CAS  Google Scholar 

  • Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. (2010a). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology, 44, 7647–7651.

    Article  CAS  Google Scholar 

  • Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. (2010b). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.

    Article  CAS  Google Scholar 

  • Xu, C., Peng, C., Sun, L. J., Zhang, S., Huang, H. M., Chen, Y. X., & Shi, J. Y. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 86, 24–33.

    Article  CAS  Google Scholar 

  • Yang, Z., Wang, X.-l., Li, H., Yang, J., Zhou, L.-Y., & Liu, Y.-d. (2017). Re-activation of aged-ZVI by iron-reducing bacterium Shewanella putrefaciens for enhanced reductive dechlorination of trichloroethylene. Journal of Chemical Technology and Biotechnology, 92, 2642–2649.

    Article  CAS  Google Scholar 

  • Ye, L., Liu, W., Shi, Q., & Jing, C. (2017). Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH. Environmental Pollution, 230, 1081–1089.

    Article  CAS  Google Scholar 

  • Zhou, L., Thanh, T. L., Gong, J., Kim, J. H., Kim, E. J., & Chang, Y. S. (2014). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.

    Article  CAS  Google Scholar 

  • Zhu, B., Xia, X., Xia, N., Zhang, S., & Guo, X. (2014). Modification of fatty acids in membranes of bacteria: Implication for an adaptive mechanism to the toxicity of carbon nanotubes. Environmental Science & Technology, 48, 4086–4095.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Deborah Ballantine, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa S. Vangnai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotchaplai, P., Khan, E., Vangnai, A.S. (2019). Microbial Perspective of NZVI Applications. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_10

Download citation

Publish with us

Policies and ethics