Skip to main content

Relevance of Classes in a Fuzzy Partition. A Study from a Group of Aggregation Operators

Part of the Communications in Computer and Information Science book series (CCIS,volume 831)

Abstract

This paper presents a study of the relevance property in a fuzzy partition from a fuzzy classification system. This study allows establishing a stopping criterion for the inclusion of a class in a fuzzy partition based on relevance. Such a criterion is constructed from a stable relationship on the commutative group formed by two new mappings (and the aggregation operators conjunctive and disjunctive) of the fuzzy classification system. The criterion is illustrated through an example on image analysis by the fuzzy c-means algorithm.

Keywords

  • Relevance
  • Covering
  • Overlap
  • Classification
  • Fuzzy partition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95312-0_9
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-95312-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    Recursiveness is a property of a sequence of operators \( \left\{ {\phi_{n} } \right\}_{n > 2} \) allowing the aggregation of any number of items: \( \phi_{2} \) tells us how to aggregate two items, \( \phi_{3} \) tells how to aggregate three items and so on. A recursive rule \( \phi \) is a family of aggregation functions \( \{ \phi_{n} :\left[ {0,1} \right]^{n} \to \left[ {0,1} \right]\}_{n > 1} \) allowing a sequential reckoning by means of a successive application of binary operators, once data have been properly ordered: the ordering rule assures that new data do not introduce modifications in the relative position of items already ordered. For more details see [5, 18].

  2. 2.

    Here we refer to strict negations of the type \( N\left( x \right) = f^{ - 1} \left( {f\left( 1 \right) - f\left( x \right)} \right) \) with \( f:\left[ {0,1} \right] \to \left[ {0,1} \right] \) increasing, bijective, \( f\left( 0 \right) = 0 \), and \( 0 < f\left( 1 \right) \le 1 \). In particular, if \( N\left( x \right) = 1 - x \), then \( f\left( x \right) = x \).

References

  1. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    CrossRef  Google Scholar 

  2. Bezdek, J., Harris, J.: Fuzzy partitions and relations: an axiomatic basis for clustering. Fuzzy Sets Syst. 1, 111–127 (1978)

    MathSciNet  CrossRef  Google Scholar 

  3. Bellman, R., Kalaba, R., Zadeh, L.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)

    MathSciNet  CrossRef  Google Scholar 

  4. Pedrycz, W.: Fuzzy sets in pattern recognition: methodology and methods. Pattern Recogn. 23, 121–146 (1990)

    CrossRef  Google Scholar 

  5. Del Amo, A., Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. Eur. J. Oper. Res. 156, 459–507 (2004)

    MathSciNet  CrossRef  Google Scholar 

  6. Del Amo, A., Gómez, D., Montero, J., Biging, G.: Relevance and redundancy in fuzzy classification systems. Mathw. Soft Comput. 8, 203–216 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Ruspini, E.: A new approach to clustering. Inf. Control 15, 22–32 (1969)

    CrossRef  Google Scholar 

  8. Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. Eur. J. Oper. Res. 10, 282–293 (1982)

    MathSciNet  CrossRef  Google Scholar 

  9. Dombi, J.: A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982)

    MathSciNet  CrossRef  Google Scholar 

  10. Matsakis, P., Andrefouet, P., Capolsini, P.: Evaluation of fuzzy partition. Remote Sens. Environ. 74, 516–533 (2000)

    CrossRef  Google Scholar 

  11. Bustince, H., Fernández, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal. Theory Methods Appl. 72, 1488–1499 (2010)

    MathSciNet  CrossRef  Google Scholar 

  12. Bustince, H., Barrenechea, E., Pagola, M., Fernández, J.: The notions of overlap and grouping functions. In: Saminger-Platz, S., Mesiar, R. (eds.) On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, Studies in Fuzziness and Soft Computing, vol. 336, pp. 137–156. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-28808-6_8

    CrossRef  Google Scholar 

  13. Gómez, D., Rodríguez, J., Bustince, H., Barrenechea, E., Montero, J.: n-dimensional overlap functions. Fuzzy Sets Syst. 287, 57–75 (2016)

    MathSciNet  CrossRef  Google Scholar 

  14. Qiao, J., Hu, B.Q.: On interval additive generators of interval overlap functions and interval grouping functions. Fuzzy Sets Syst. 323, 19–55 (2017)

    MathSciNet  CrossRef  Google Scholar 

  15. Qiao, J., Hu, B.Q.: On the migrativity of uninorms and nullnorms over overlap and grouping functions. Fuzzy Sets Syst. (2017). http://doi.org/10.1016/j.fss.2017.11.012

  16. Klement, E., Moser, B.: On the redundancy of fuzzy partitions. Fuzzy Sets Syst. 85, 195–201 (1997)

    MathSciNet  CrossRef  Google Scholar 

  17. Sperber, D., Wilson, D.: Relevance: Communication and Cognition, 2nd edn. Blackwell Publishers Inc., Cambridge (1995)

    Google Scholar 

  18. Cutello, V., Montero, J.: Recursive connective rules. Int. J. Intell. Syst. 14, 3–20 (1999)

    CrossRef  Google Scholar 

  19. Castiblanco, F., Gómez, D., Montero, J., Rodríguez, J.: Aggregation tools for the evaluation of classifications. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Otsu, pp. 1–5 (2017)

    Google Scholar 

  20. Mordeson, J., Bhutani, K., Rosenfeld, A.: Fuzzy Group Theory. Springer, Heidelberg (2005). https://doi.org/10.1007/b12359

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Government of Spain (grant TIN2015-66471-P), the Government of Madrid (grant S2013/ICE-2845), and Complutense University (UCM Research Group 910149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Castiblanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Castiblanco, F., Franco, C., Montero, J., Rodríguez, J.T. (2018). Relevance of Classes in a Fuzzy Partition. A Study from a Group of Aggregation Operators. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)