Skip to main content

Representing Intuistionistic Fuzzy Bi-implications Using Quantum Computing

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Abstract

Computer systems based on intuitionistic fuzzy logic are capable of generating a reliable output even when handling inaccurate input data by applying a rule based system, even with rules that are generated with imprecision. The main contribution of this paper is to show that quantum computing can be used to extend the class of intuitionistic fuzzy sets with respect to representing intuitionistic fuzzy bi-implications. This paper describes a multi-dimensional quantum register using aggregations operators such as t-(co)norms and implications based on quantum gates allowing the modeling and interpretation of intuitionistic fuzzy bi-implications.

Work progress stage: completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name braket comes from the convention that a column vector is called a “ket” and is denoted by \(| \; \rangle \) and a row vector is called a “bra” and is denoted by \(\langle \; |\).

References

  1. Cordón, O., Herrera, F., Peregrín, A.: Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets Syst. 86(1), 15–41 (1997)

    Article  Google Scholar 

  2. Melnichenko, G.: Energy discriminant analysis, quantum logic, and fuzzy sets. J. Multivar. Anal. 101(1), 68–76 (2010)

    Article  MathSciNet  Google Scholar 

  3. Nikam, S.R., Nikumbh, P.J., Kulkarni, S.P.: Fuzzy logic and neuro-fuzzy modeling. J. Artif. Intell. 3(2), 74 (2012)

    Google Scholar 

  4. Rigatos, G.G., Tzafestas, S.G.: Parallelization of a fuzzy control algorithm using quantum computation. IEEE Trans. Fuzzy Syst. 10(4), 451–60 (2002)

    Article  Google Scholar 

  5. Mannucci, M.A.: Quantum fuzzy sets: Blending fuzzy set theory and quantum computation. arXiv preprint https://arxiv.org/abs/cs/0604064. 16 Apr 2006

  6. Visintin, L., Maron, A., Reiser, R., Kreinovich, V.: Aggregation operations from quantum computing. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), 7 July 2013, pp. 1–8. IEEE (2013 )

    Google Scholar 

  7. Reiser, R., Lemke, A., Avila, A., Vieira, J., Pilla, M., Du Bois, A.: Interpretations on quantum fuzzy computing: intuitionistic fuzzy operations \(\times \) quantum operators. Electron. Notes Theor. Comput. Sci. 30(324), 135–50 (2016)

    Article  Google Scholar 

  8. Atanassov, K.T.: On intuitionistic fuzzy negations. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications, pp. 159–167. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34783-6_17

    Chapter  Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3

    Book  MATH  Google Scholar 

  10. Olguín, C.A.: What is a Fuzzy Bi-implication? Master’s thesis, Universidade Federal do Rio Grande do Norte

    Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-015-9540-7

    Book  MATH  Google Scholar 

  12. Baczyński, M., Jayaram, B.: An introduction to fuzzy implications. Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231, pp. 1–35. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5_1

    Chapter  MATH  Google Scholar 

  13. Recasens, J.: Indistinguishability Operators: Modelling Fuzzy Equalities and Fuzzy Equivalence Relations, vol. 260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16222-0

    Book  MATH  Google Scholar 

  14. Maron, A.K., Visintin, L., Abeijon, A., Reiser, R.H.S.: Interpreting fuzzy connectives from quantum computing- case study in reichenbach implication class. In: CBSF 2012: Congresso Brasileiro de Sistemas Fuzzy, Natal, Brasil, pp. 1–12. UFRN (2012)

    Google Scholar 

  15. Ávila, A., Schmalfuss, M., Reiser, R., Kreinovich, V.: Fuzzy xor classes from quantum computing. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 305–317. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_28

    Chapter  MATH  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  17. Fodor, J.C., Roubens, M.R.: Fuzzy Preference Modelling and Multicriteria Decision Support, vol. 14. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-017-1648-2

    Book  MATH  Google Scholar 

  18. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  19. Maron, A.K., Reiser, R.H.S., Pilla, M.L.: High-performance quantum computing simulation for the quantum geometric machine model. In: CCGRID 2013 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, New York, pp. 1–8. IEEE (2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank the partial funding of this project via 448766/2014-0 (MCTI/ CNPQ/ Universal 14/2014 - B), 310106/2016-8 (CNPq/PQ 12/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Reiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agostini, L., Feitosa, S., Avila, A., Reiser, R., DuBois, A., Pilla, M. (2018). Representing Intuistionistic Fuzzy Bi-implications Using Quantum Computing. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics