Skip to main content

From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology

  • Chapter
  • First Online:
Biomechanics in Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

For the last three decades, the concept of immunoediting has evolved to characterize our increasing understanding of the interactions between cells from the immune system and cancer development. Elucidating the role of immune cells in the progression of cancer has been very challenging due to their dual role; the immune system can either suppress tumor formation by killing cancer cells, or it can also promote tumor growth. Revealing how immune cells are hampered by the tumor microenvironment and how they aid tumor progression has signaled strategies to reverse these effects and control cancer cell growth; this has been the advent of immunotherapy design. More recently, the role of physical forces in the process of immunoediting has been highlighted by multiple studies focusing on understanding how force changes in the stiffness of the extracellular matrix and fluid flow shear stress contribute to tumor development. Using models in vitro that incorporate biomechanical components, it has been shown that these physical aspects are not only important during the formation and growth of primary tumors, but in the metastatic process as well. In this way, we have also gained insight into the interactions occurring within the vascular system, which are highly affected by the dynamics of physical collisions between cells and by shear forces. Here, we review the concept of cancer immunoediting with an emphasis on biomechanics and conclude with a summary on current immunotherapies and potential new strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tse JM et al (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci 109:911–916

    Article  CAS  PubMed  Google Scholar 

  2. Burnet FM (1967) Immunological aspects of malignant disease. Lancet 289:1171–1174

    Article  Google Scholar 

  3. Stutman O (1974) Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183:534–536

    Article  CAS  PubMed  Google Scholar 

  4. Shankaran V et al (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  6. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  7. Boshoff C, Weiss R (2002) Aids-related malignancies. Nat Rev Cancer 2:373–382

    Article  CAS  PubMed  Google Scholar 

  8. Henderson G et al (2011) Occurrence of the human tumor-specific antigen structure Gal1-3GalNAcα-(Thomsen-Friedenreich) and related structures on gut bacteria: prevalence, immunochemical analysis and structural confirmation. Glycobiology 21:1277–1289

    Article  CAS  PubMed  Google Scholar 

  9. Gross L (1943) Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326–333

    Google Scholar 

  10. Stewart T, Tsai SC, Grayson H, Henderson R, Opelz G (1995) Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346:796–798

    Article  CAS  PubMed  Google Scholar 

  11. Frisch M, Biggar RJ, Engels EA, Goedert JJ (2001) Association of cancer with AIDS related immunosuppression in adults. JAMA 285:1736–1745

    Article  CAS  PubMed  Google Scholar 

  12. Gallagher B, Wang ZY, Schymura MJ, Kahn A, Fordyce EJ (2001) Cancer incidence in New York state acquired immunodeficiency syndrome patients. Am J Epidemiol 154:544–556

    Article  CAS  PubMed  Google Scholar 

  13. Butschak G, Karsten U (2002) Isolation and characterization of Thomsen-Friedenreich-specific antibodies from human serum. Tumor Biol 23:113–122

    Article  CAS  Google Scholar 

  14. Koebel CM et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  CAS  PubMed  Google Scholar 

  15. Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39:1379–1389

    Article  PubMed  Google Scholar 

  16. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radoja S, Rao TD, Hillman D, Frey AB (2000) Mice bearing late-stage tumors have normal functional systemic T cell responses in vitro and in vivo. J Immunol 164:2619–2628

    Article  CAS  PubMed  Google Scholar 

  18. Doedens AL et al (2010) Macrophage expression of hypoxia-inducible factor-1alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Landskron G, De Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Review article chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:14918

    Article  CAS  Google Scholar 

  20. Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  CAS  PubMed  Google Scholar 

  21. Koumoutsakos P, Pivkin I, Milde F (2013) The fluid mechanics of cancer and its therapy. Annu Rev Fluid Mech 45:325–355

    Article  Google Scholar 

  22. Taylor AE (1981) Capillary fluid filtration, Starling forces and lymph flow. Circ Res 49:557–575

    Article  CAS  PubMed  Google Scholar 

  23. Butler TP, Grantham FH, Gullino PM (1975) Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 35:3084–3088

    CAS  PubMed  Google Scholar 

  24. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  PubMed  Google Scholar 

  25. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodemann HP, Müller GA (1991) Characterization of human renal fibroblasts in health and disease: II. In vitro growth, differentiation, and collagen synthesis of fibroblasts from kidneys with interstitial fibrosis. Am J Kidney Dis 17:684–686

    Article  CAS  PubMed  Google Scholar 

  27. Pierce RA et al (1998) Expression of laminin α3, α4, and α5 chains by alveolar epithelial cells and fibroblasts. Am J Respir Cell Mol Biol 19:3–10

    Article  Google Scholar 

  28. Kanekura T, Chen X, Kanzaki T (2002) Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 99:520–528

    Article  CAS  PubMed  Google Scholar 

  29. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  30. Bhowmick NA et al (2004) TGF-ß signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  CAS  PubMed  Google Scholar 

  31. Gavine PR et al (2012) AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 72:2045–2056

    Article  CAS  PubMed  Google Scholar 

  32. Colige A, Nusgens B, Lapiere C (1988) Effect of EGF on human skin fibroblasts is modulated by the extracellular matrix. Arch Dermatol Res 280:S42–S46

    CAS  PubMed  Google Scholar 

  33. Chua CC, Geiman DE, Keller GH, Ladda RL (1985) Induction of collagenase secretion in human fibroblast cultures by growth promoting factors. J Biol Chem 260:5213–5216

    CAS  PubMed  Google Scholar 

  34. Camacho-Hubner C, Busby WH, McCusker RH, Wright G, Clemmons DR (1992) Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion. J Biol Chem 267:11949–11956

    CAS  PubMed  Google Scholar 

  35. Grugan KD et al (2010) Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci 107:11026–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olgart C, Frossard N (2001) Human lung fibroblasts secrete nerve growth factor: effect of inflammatory cytokines and glucocorticoids. Eur Respir J 18: 115–121

    Article  CAS  PubMed  Google Scholar 

  37. Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng G, Tse J, Jain RK, Munn LL (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4:e4632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695–695

    Article  CAS  PubMed  Google Scholar 

  40. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Slattery MJ, Dong C (2003) Neutrophils influence melanoma adhesion and migration under flow conditions. Int J Cancer 106:713–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F (2010) Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res 316:138–148

    Article  CAS  PubMed  Google Scholar 

  43. Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC (2000) Clinical targets for anti-metastasis therapy. Adv Cancer Res 79:91–121

    Article  CAS  PubMed  Google Scholar 

  44. Scherbarth S, Orr FW (1997) Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-la on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res 57:4105–4111

    CAS  PubMed  Google Scholar 

  45. Dustin ML, Springer T (1988) Mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 107:321–331

    Article  CAS  PubMed  Google Scholar 

  46. Bochner BS et al (1991) Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med 173:1553–1557

    Article  CAS  PubMed  Google Scholar 

  47. Dong C, Cao J, Struble EJ, Lipowsky HH (1999) Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng 27:298–312

    Article  CAS  PubMed  Google Scholar 

  48. Dong C, Lei XX (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33:35–43

    Article  CAS  PubMed  Google Scholar 

  49. Shaw Bagnall J et al (2015) Deformability of tumor cells versus blood cells. Sci Rep 5:18542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Article  CAS  PubMed  Google Scholar 

  51. McClatchey PM, Hannen E, Thomas SN (2016) Microscale technologies for cell engineering 197–218. https://doi.org/10.1007/978-3-319-20726-1

    Google Scholar 

  52. Alon R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542

    Article  CAS  PubMed  Google Scholar 

  53. Pierres A, Benoliel AM, Bongrand P, Van Der Merwe PA (1996) Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc Natl Acad Sci U S A 93: 15114–15118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marshall BT et al (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    Article  CAS  PubMed  Google Scholar 

  55. Kong F, García AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci 109: 18815–18820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Finger EB et al (1996) Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269

    Article  CAS  PubMed  Google Scholar 

  58. Peng H-H, Liang S, Henderson AJ, Dong C (2007) Regulation of interleukin-8 expression in melanoma-stimulated neutrophil inflammatory response. Exp Cell Res 313:551–559

    Article  CAS  PubMed  Google Scholar 

  59. Dong C, Slattery MJ, Liang S, Peng H-H (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159

    PubMed  PubMed Central  Google Scholar 

  60. Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310:282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Slattery MJ et al (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 6804: 831–839

    Article  CAS  Google Scholar 

  62. Dong C (2010) Biomaterials as Stem Cell Niche. Roy K (ed), vol 2, pp 477–521

    Google Scholar 

  63. Neelamegham S (2004) Transport features, reaction kinetics and receptor biomechanics controlling selectin and integrin mediated cell adhesion. Cell Commun Adhes 11:35–50

    Article  CAS  PubMed  Google Scholar 

  64. Hoskins MH, Dong C (2006) Kinetics analysis of binding between melanoma cells and neutrophils. Mol Cell Biomech 3:79–87

    PubMed  PubMed Central  Google Scholar 

  65. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  66. Sharma A et al (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66:8200–8209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liang S, Sharma A, Peng HH, Robertson G, Dong C (2007) Targeting mutant (V600E) B-Raf in melanoma interrupts immunoediting of leukocyte functions and melanoma extravasation. Cancer Res 67:5814–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70:6071–6082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McDonald B et al (2009) Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 125:1298–1305

    Article  CAS  PubMed  Google Scholar 

  70. Spicer JD et al (2012) Neutrophils promote liver metastasis via mac-1-mediated interactions with circulating tumor cells. Cancer Res 72:3919–3927

    Article  CAS  PubMed  Google Scholar 

  71. Gabrilovich DI, Ostrand-rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Evani SJ, Prabhu RG, Gnanaruban V, Finol EA, Ramasubramanian AK (2013) Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J 27:3017–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang S, Dong C (2008) Integrin VLA-4 enhances sialyl-Lewisx/a-negative melanoma adhesion to and extravasation through the endothelium under low flow conditions. Am J Physiol Cell Physiol 295:C701–C707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aragon-Sanabria V et al (2017) VE-Cadherin disassembly and cell contractility in the endothelium are necessary for barrier disruption induced by tumor cells. Sci Rep 7:45835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mierke CT (2011) Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem 286:40025–40037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutova M et al (2010) Therapeutic targeting of melanoma cells using neural stem cells expressing carboxylesterase, a CPT-11 activating enzyme. Curr Stem Cell Res Ther 5:273–276

    Article  CAS  PubMed  Google Scholar 

  77. Khanna P et al (2010) p38 MAP kinase is necessary for melanoma-mediated regulation of VE-cadherin disassembly. Am J Physiol Cell Physiol 298: 1140–1150. https://doi.org/10.1152/ajpcell.00242.2009

    Article  CAS  Google Scholar 

  78. Ehrlich P (1899) Croonian lecture: on immunity with special reference to cell life. Proc R Soc Lond 66:424–448

    Article  Google Scholar 

  79. Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  PubMed  Google Scholar 

  80. Yaddanapudi K, Mitchell RA, Eaton JW (2013) Cancer vaccines: looking to the future. Oncoimmunology 2:e23403

    Article  PubMed  PubMed Central  Google Scholar 

  81. Su Y, Xie Z, Kim GB, Dong C, Yang J (2015) Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 1:201–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xie Z et al (2017) Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small 13:1–10

    Google Scholar 

  83. Rosenberg SA et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492

    Article  CAS  PubMed  Google Scholar 

  84. Qian X, Wang X, Jin H (2014) Cell transfer therapy for cancer : past , present and future. J Immunol Res 2014:9. https://doi.org/10.1155/2014/525913

    Article  CAS  Google Scholar 

  85. Ardolino M, Hsu J, Raulet DH (2015) Cytokine treatment in cancer immunotherapy. Oncotarget 6:19346–19347

    Article  PubMed  PubMed Central  Google Scholar 

  86. Garrido C et al (2012) MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 33:687–693

    Article  CAS  PubMed  Google Scholar 

  87. Inoue M et al (2012) Expression of MHC class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology 1:1104–1110

    Article  PubMed  PubMed Central  Google Scholar 

  88. Levin AM et al (2012) Exploiting a natural conformational switch to engineer an Interleukin-2 superkine. Nature 484:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16:131–144

    Article  PubMed  CAS  Google Scholar 

  90. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Audran R et al (2003) Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine 21:1250–1255

    Article  CAS  PubMed  Google Scholar 

  92. Madura Larsen J et al (2007) BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology 121:276–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat Rev Urol 11:153–162

    Article  CAS  PubMed  Google Scholar 

  94. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:1–18

    Article  CAS  Google Scholar 

  96. Escobar G et al (2014) Genetic engineering of hematopoiesis for targeted IFN- delivery inhibits breast cancer progression. Sci Transl Med 6:217ra3–217ra3

    Article  PubMed  CAS  Google Scholar 

  97. Dubois S, Mariner J, Waldmann TA, Tagaya Y (2002) IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17:537–547

    Article  CAS  PubMed  Google Scholar 

  98. Yaddanapudi K, Mitchell RA, Eaton JW (2013) Cancer vaccines. Oncoimmunology 2:e23403

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Segal NH et al (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68:889–892

    Article  CAS  PubMed  Google Scholar 

  101. Shi H et al (2015) The status, limitation and improvement of adoptive cellular immunotherapy in advanced urologic malignancies. Chin J Cancer Res 27:128–137

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gilham DE et al (2015) Adoptive T-cell therapy for cancer in the United Kingdom: a review of activity for the British Society of Gene and Cell Therapy Annual Meeting 2015. Hum Gene Ther 26:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M (2015) Immunotherapeutic approaches for cancer therapy: an updated review. Artif Cells Nanomed Biotechnol 1401:1–11

    Article  CAS  Google Scholar 

  104. Yee C (2013) Adoptive T-cell therapy for cancer: boutique therapy or treatment modality? Clin Cancer Res 19:4550–4552

    Article  CAS  PubMed  Google Scholar 

  105. Klebanoff C a et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101:1969–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xue J et al (2017) Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol 12:692–700. https://doi.org/10.1038/nnano.2017.54

    Article  CAS  PubMed  Google Scholar 

  107. Huang B (2013) Lymphocyte-mediated drug nanoparticle delivery to disseminated lymphoma tumors in vivo. MIT, Cambridge

    Google Scholar 

  108. Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng K (2007) Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 14:324–333. https://doi.org/10.1038/sj.gt.3302880

    Article  CAS  PubMed  Google Scholar 

  109. Onishi T et al (2016) Tumor-specific delivery of biologics by a novel T-cell line HOZOT. Sci Rep 6:38060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Foley NH et al (2012) Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Cell 18:1089–1098

    Google Scholar 

  111. Chandrasekaran S, Chan MF, Li J, King MR (2016) Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 77: 66–76

    Article  CAS  PubMed  Google Scholar 

  112. Mitchell MJ, Wayne E, Rana K, Schaffer CB, King MR (2014) TRAIL-coated leukocytes that kill cancer cells in the circulation. Proc Natl Acad Sci 111:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiao P, Otto M, Geng Q, Li C, Li F (2015) Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. J Mater Chem B 4:513–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Choi J et al (2012) Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33:4195–4203

    Article  CAS  PubMed  Google Scholar 

  115. Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci 100:8372–8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Littman DR (2015) Releasing the brakes on cancer immunotherapy. Cell 162:1186–1190

    Article  CAS  PubMed  Google Scholar 

  117. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584

    Article  CAS  PubMed  Google Scholar 

  119. Dzik S (2000) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin 10 secretion. Transfus Med Rev 14:285

    Google Scholar 

  120. Brahmer JR et al (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rosenberg SA (2014) Decade in review—cancer immunotherapy: entering the mainstream of cancer treatment. Nat Rev Clin Oncol 11:630–632

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rosenberg SA et al (1988) Use of tumor-infiltrating lymphocytes and Interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 319:1676

    Article  CAS  PubMed  Google Scholar 

  125. Muul LM, Spiess PJ, Rosenberg SA (1987) Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 138:989–995

    CAS  PubMed  Google Scholar 

  126. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dudley ME et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rosenberg SA et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161:201–204

    Article  CAS  PubMed  Google Scholar 

  131. Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol 56:672–686

    Article  CAS  PubMed  Google Scholar 

  132. Chu D, Gao J, Wang Z (2015) Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 9:11800–11811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Adams DH, Lloyd AR (1997) Chemokines: leucocyte recruitment and activation cytokines. Lancet 349:490–495

    Article  CAS  PubMed  Google Scholar 

  134. Huang WC et al (2015) Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials 71:71–83

    Article  CAS  PubMed  Google Scholar 

  135. Kunkel EJ et al (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4

    Article  CAS  PubMed  Google Scholar 

  136. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  CAS  PubMed  Google Scholar 

  137. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    Article  CAS  PubMed  Google Scholar 

  138. Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ (2012) Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33:5776–5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Delcassian D, Sattler S, Dunlop IE (2017) T cell immunoengineering with advanced biomaterials. Integr Biol 9:211–222

    Article  CAS  Google Scholar 

  140. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ueno H et al (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234: 199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Higano CS et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679

    Article  CAS  PubMed  Google Scholar 

  143. Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  PubMed  Google Scholar 

  144. Food and Drug Administration (2010) Provenge FDA - package insert and patient information, pp 1–17

    Google Scholar 

  145. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115:11109–11146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Food and Drug Administration (United States) (2011) FY 2011 innovative drug approvals. Fda

    Google Scholar 

  147. Mahoney KM, Freeman GJ, McDermott DF (2015) The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 37:764–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the former members of the lab and their collaborators for their outstanding contribution to the work presented in this chapter, Dr. Margaret Slattery, Dr. Shile Liang, Dr. Hsin H. Peng, Dr. Meghan Hoskins, and Dr. Payal Khanna. This work was supported in part by NIH grants M01-RR-10732, CA-97306, C06-RR-016499, NIBIBEB012575, NCICA182670, and NHLBIHL118498; National Science Foundation (NSF) grants CBET-0729091, DMR1313553, CMMI1266116, and CBET-BME1330663; and the Pennsylvania Department of Health (PA-DOH)—Commonwealth Universal Research Enhancement (CURE) Program (Dong–Multi-P.I.), 2015–2017, “Development of Smart Drug Delivery Systems for Brain Tumors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aragon-Sanabria, V., Kim, G.B., Dong, C. (2018). From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_7

Download citation

Publish with us

Policies and ethics