Skip to main content

Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1092)

Abstract

ECM stiffness is emerging as a prognostic marker of tumor aggression or potential for relapse. However, conflicting reports muddle the question of whether increasing or decreasing stiffness is associated with aggressive disease. This chapter discusses this controversy in more detail, but the fact that tumor stiffening plays a key role in cancer progression and in regulating cancer cell behaviors is clear. The impact of having in vitro biomaterial systems that could capture this stiffening during tumor evolution is very high. These cell culture platforms could help reveal the mechanistic underpinnings of this evolution, find new therapeutic targets to inhibit the cross talk between tumor development and ECM stiffening, and serve as better, more physiologically relevant platforms for drug screening.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Samuel MS et al (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faouzi S et al (1999) Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol 30:275–284

    Article  CAS  PubMed  Google Scholar 

  3. Seo BR et al (2015) Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 7:301ra130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  5. Acerbi I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol 7:1120–1134

    Article  CAS  Google Scholar 

  6. Fenner J et al (2014) Macroscopic stiffness of breast tumors predicts metastasis. Sci Rep 4:5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rizvi I et al (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A 110:E1974–E1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Physical Sciences - Oncology Centers, N et al (2013) A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep 3:1449

    Article  CAS  Google Scholar 

  10. Gillette BM et al (2008) In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat Mater 7:636–640

    Article  CAS  PubMed  Google Scholar 

  11. Raub CB, Putnam AJ, Tromberg BJ, George SC (2010) Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater 6:4657–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Achilli M, Mantovani D (2010) Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers 2:664–680

    Article  CAS  Google Scholar 

  13. Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ (2009) The elastic modulus of Matrigel as determined by atomic force microscopy. J Struct Biol 167:216–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duong H, Wu B, Tawil B (2009) Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen–thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A 15:1865–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim U-J et al (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792

    Article  CAS  PubMed  Google Scholar 

  16. Erat MC, Sladek B, Campbell ID, Vakonakis I (2013) Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem 288:17441–17450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lutolf MP et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bahney CS, Hsu CW, Yoo JU, West JL, Johnstone B (2011) A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J 25:1486–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall MS et al (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113:14043–14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ehrbar M et al (2011) Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 100:284–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martell J, Weerapana E (2014) Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules 19:1378–1393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Li C, Tang J, Xie J (2009) Synthesis of crosslinking amino acids by click chemistry. Tetrahedron 65:7935–7941

    Article  CAS  Google Scholar 

  24. Anseth KS, Klok HA (2016) Click chemistry in biomaterials, nanomedicine, and drug delivery. Biomacromolecules 17:1–3

    Article  CAS  PubMed  Google Scholar 

  25. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weaver VM, Bissell MJ (1999) Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 4:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei SC et al (2015) Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 17:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol 2:424–434

    Article  CAS  Google Scholar 

  29. Riching KM et al (2014) 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J 107:2546–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavo M et al (2016) Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 6:35367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Hydrogels for medical and related applications, vol 31. American Chemical Society, Washington, D.C., pp 1–36

    Chapter  Google Scholar 

  32. Lutolf MP (2009) Biomaterials: spotlight on hydrogels. Nat Mater 8:451–453

    Article  CAS  PubMed  Google Scholar 

  33. Buwalda SJ et al (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273

    Article  CAS  PubMed  Google Scholar 

  34. Kyburz KKA (2015) Synthetic mimics of the extracellular matrix: how simple is complex enough? Ann Biomed Eng 43:489–500

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li J, Suo Z, Vlassak JJ (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2:6708–6713

    PubMed  Google Scholar 

  36. Sakai T et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  37. Zhang L, Zhao J, Zhu J, He C, Wang H (2012) Anisotropic tough poly (vinyl alcohol) hydrogels. Soft Matter 8:10439–10447

    Article  CAS  Google Scholar 

  38. Herrick WG et al (2013) PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14:2294–2304

    Article  CAS  PubMed  Google Scholar 

  39. Sague J, Vogt J, Andreatta B, Egli R, Luginbuehl R (2012) Orthopaedic proceedings. Orthop Proc 94:210

    Google Scholar 

  40. Yang CH et al (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422

    Article  CAS  PubMed  Google Scholar 

  41. Sun TL et al (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    Article  CAS  PubMed  Google Scholar 

  42. Muniz EC, Geuskens G (2001) Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly (N-isopropylacrylamide). Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  43. Moghadam MN, Pioletti DP (2016) Biodegradable HEMA-based hydrogels with enhanced mechanical properties. J Biomed Mater Res B Appl Biomater 104:1161–1169

    Article  CAS  PubMed  Google Scholar 

  44. Sperling RH (2014). Polymer Blends Handbook; p. 677-724

    Google Scholar 

  45. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  47. Constantinou AP, Georgiou TK (2016) Tuning the gelation of thermoresponsive gels. Eur Polym J 78:366–375

    Article  CAS  Google Scholar 

  48. Koo SH, Lee KY, Lee HG (2010) Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocoll 24:619–625

    Article  CAS  Google Scholar 

  49. Fang Y et al (2007) Multiple steps and critical behaviors of the binding of calcium to alginate. J Phys Chem B 111:2456–2462

    Article  CAS  PubMed  Google Scholar 

  50. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64(Supplement):18–23

    Article  Google Scholar 

  51. Neradovic D, Soga O, Van Nostrum CF, Hennink WE (2004) The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 25:2409–2418

    Article  CAS  PubMed  Google Scholar 

  52. Yang X et al (2010) Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze–thawing. Radiat Phys Chem 79:606–611

    Article  CAS  Google Scholar 

  53. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  54. Argin S, Kofinas P, Lo YM (2014) The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll 40:138–144

    Article  CAS  Google Scholar 

  55. Phelps EA et al (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in-situ delivery. Adv Mater 24:64–62

    Article  CAS  PubMed  Google Scholar 

  56. Provenzano PP et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Raub CB et al (2007) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J 92:2212–2222

    Article  CAS  PubMed  Google Scholar 

  58. Barney LE et al (2016) The predictive link between matrix and metastasis. Curr Opin Chem Eng 11:85–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

    Article  CAS  Google Scholar 

  60. Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568

    Article  CAS  PubMed  Google Scholar 

  61. Rieger KA et al (2016) Transport of microorganisms into cellulose nanofiber mats. RSC Adv 6:24438–24445

    Article  CAS  Google Scholar 

  62. Meng X, Perry SL, Schiffman JD (2017) Complex coacervation: chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Lett 6:505–511

    Article  CAS  PubMed  Google Scholar 

  63. Regev O, Vandebril S, Zussman E, Clasen C (2010) The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 51:2611–2620

    Article  CAS  Google Scholar 

  64. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46:3372–3384

    Article  CAS  Google Scholar 

  65. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810

    Article  CAS  Google Scholar 

  66. Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39:3528–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rossmurphy S, Ross Murphy S (1994) Rheological characterization of polymer gels and networks. Polym Gels Networks 2:229–237

    Article  CAS  Google Scholar 

  68. Macosko C. VCH, 1994

    Google Scholar 

  69. Nowatzki PJ, Franck C, Maskarinec SA, Ravichandran G, Tirrell DA (2008) Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation. Macromolecules 41:1839–1845

    Article  CAS  Google Scholar 

  70. Paiva A, Sheller N, Foster MD, Crosby AJ, Shull KR (2001) Microindentation and nanoindentation studies of aging in pressure-sensitive adhesives. Macromolecules 34:2269–2276

    Article  CAS  Google Scholar 

  71. Wen Q, Janmey PA (2013) Effects of non-linearity on cell–ECM interactions. Exp Cell Res 319:2481–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winer JP, Oake S, Janmey PA (2009) Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS One 4:e6382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Nam S, Hu KH, Butte MJ, Chaudhuri O (2016) Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc Natl Acad Sci 113:5492–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334

    Article  CAS  PubMed  Google Scholar 

  75. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8:3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zustiak SP, Leach JB (2011) Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels. Biotechnol Bioeng 108:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Holmes DL, Stellwa NC (1991) Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12:612–619

    Article  CAS  PubMed  Google Scholar 

  79. Canal T, Peppas N (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 23:1183–1193

    Article  CAS  PubMed  Google Scholar 

  80. Zustiak SP, Leach JB (2010) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11:1348–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jang J et al (2014) Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 37:69–77

    Article  CAS  PubMed  Google Scholar 

  82. Trappmann B et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    Article  CAS  PubMed  Google Scholar 

  83. Lee JP, Kassianidou E, MacDonald JI, Francis MB, Kumar S (2016) N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. Biomaterials 102:268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-β1–induced apoptosis and epithelial–mesenchymal transition. Mol Biol Cell 23:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shukla V, Higuita-Castro N, Nana-Sinkam P, Ghadiali S (2016) Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition. J Biomed Mater Res A 104(5):1182–1193

    Article  CAS  PubMed  Google Scholar 

  86. Gill BJ et al (2012) A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res 72:6013–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci 109:10334–10339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zaman MH et al (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci 103:10889–10894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mih JD et al (2011) A multiwell platform for studying stiffness-dependent cell biology. PLoS One 6:e19929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin J-W, Mooney DJ (2016) Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proc Natl Acad Sci 113:12126–12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smalley KSM, Lioni M, Herlyn M (2006) Life ins't flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42:242–247

    Article  CAS  PubMed  Google Scholar 

  93. Sunyer R, Jin AJ, Nossal R, Sackett DL (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7:e46107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hartman CD, Isenberg BC, Chua SG, Wong JY (2016) Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc Natl Acad Sci 113:11190–11195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuo CHR, Xian J, Brenton JD, Franze K, Sivaniah E (2012) Complex stiffness gradient substrates for studying mechanotactic cell migration. Adv Mater 24:6059

    Article  CAS  PubMed  Google Scholar 

  96. Shrirao AB, Kung FH, Yip D, Cho CH, Townes-Anderson E (2014) Vacuum-assisted fluid flow in microchannels to pattern substrates and cells. Biofabrication 6:035016–035016

    Article  PubMed  PubMed Central  Google Scholar 

  97. Milano DF, Ngai NA, Muthuswamy SK, Asthagiri AR (2016) Regulators of metastasis modulate the migratory response to cell contact under spatial confinement. Biophys J 110:1886–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tan CP et al (2009) Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis. Integr Biol 1:587–594

    Article  CAS  Google Scholar 

  99. Tseng Q et al (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11:2231–2240

    Article  CAS  PubMed  Google Scholar 

  100. Choi MJ et al (2013) Microchamber/nanodimple polystyrene surfaces constructing cell aggregates fabricated by thermoset mold-based hot embossing. Microelectron Eng 110:340–345

    Article  CAS  Google Scholar 

  101. Liu N et al (2014) Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics. Lab Chip 14:1367–1376

    Article  CAS  PubMed  Google Scholar 

  102. Park KM, Gerecht S (2014) Hypoxia-inducible hydrogels. Nat Commun 5:4075

    Article  CAS  PubMed  Google Scholar 

  103. Lewis DM et al (2016) Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci U S A 113:9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly R. Peyton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peyton, S.R., Gencoglu, M.F., Galarza, S., Schwartz, A.D. (2018). Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_13

Download citation

Publish with us

Policies and ethics