Skip to main content

Proposal for Muscle Rehabilitation of Lower Limbs Using an Interactive Virtual System Controlled Through Gestures

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10851)

Abstract

This work presents the development of an interactive virtual rehabilitation system as an assistant tool to help in the rehabilitation process of lower limbs muscles, specifically focused on children from seven years and older who suffer sicknesses that limit the normal movement of the body. The system is mainly based in algorithms that recognize gestures of the user captured through the Microsoft Kinect 2.0. Furthermore, the experimental results are presented and discussed since the point of view of the usability and the advantages that the proposed system achieves.

Keywords

  • Virtual interface
  • Kinect 2.0
  • Gestual control
  • Unity 3D

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95282-6_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95282-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Hoang, T.C., Dang, H.T., Nguyen, V.D.: Kinect-based virtual training system for rehabilitation. In: Proceedings of the International Conference on IEEE System Science and Engineering (ICSSE), pp. 53–56 (2017)

    Google Scholar 

  2. Abresch, R.T., Carter, G.T., Han, J.J., McDonald, C.M.: Exercise in neuromuscular diseases. Phys. Med. Rehabil. Clin. 23(03), 653–673 (2012)

    CrossRef  Google Scholar 

  3. Liao, W.W., McCombe Waller, S., Whitall, J.: Kinect-based individualized upper extremity rehabilitation is effective and feasible for individuals with stroke using a transition from clinic to home protocol. Cogent Med. 1428038 (2018) (just-accepted)

    Google Scholar 

  4. Bai, J., Song, A., Xu, B., Nie, J., Li, H.: A novel human-robot cooperative method for upper extremity rehabilitation. Int. J. Soc. Robot. 9(2), 265–275 (2017)

    CrossRef  Google Scholar 

  5. Simonsen, D., Popovic, M.B., Spaich, E.G., Andersen, O.K.: Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement. Med. Biol. Eng. Comput. 55(11), 1927–1935 (2017)

    CrossRef  Google Scholar 

  6. Albiol-Pérez, S., Gómez, J.A.G., Olmo, E., Soler, A.M.: A virtual fine rehabilitation system for children with cerebral palsy: assesment of the usability of a low-cost system. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 619–627. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_63

    CrossRef  Google Scholar 

  7. Bejarano, N.C., Maggioni, S., De Rijcke, L., Cifuentes, C.A., Reinkensmeyer, D.J.: Robot-assisted rehabilitation therapy: recovery mechanisms and their implications for machine design. In: Pons, J., Raya, R., González, J. (eds.) Emerging Therapies in Neurorehabilitation II. Biosystems and Biorobotics, vol. 10, pp. 197–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24901-8_8

    CrossRef  Google Scholar 

  8. Levin, M.F., Weiss, P.L., Keshner, E.A.: Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95(03), 415–425 (2015)

    CrossRef  Google Scholar 

  9. Valdebenito, V.R., Ruiz, R.D.: Relevant aspects in the rehabilitation of children with neuromuscular diseases. Revista Médica Clínica Las Condes 25(02), 295–305 (2014)

    CrossRef  Google Scholar 

  10. Zhu, M.H., Yang, C.J., Yang, W., Bi, Q.: A kinect-based motion capture method for assessment of lower extremity exoskeleton. In: Yang, C., Virk, G., Yang, H. (eds.) Wearable Sensors and Robots. LNEE, vol. 399, pp. 481–494. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2404-7_37

    CrossRef  Google Scholar 

  11. Tannous, H., Istrate, D., Tho, M.H.B., Dao, T.T.: Serious game and functional rehabilitation for the lower limbs. Eur. Res. Telemed./La Recherche Européenne en Télémédecine 5(02), 65–69 (2016)

    CrossRef  Google Scholar 

  12. Zhao, L., Lu, X., Tao, X., Chen, X.: A Kinect-based virtual rehabilitation system through gesture recognition. In: Proceedings of the International Conference on IEEE Virtual Reality and Visualization (ICVRV), pp. 380–384 (2016)

    Google Scholar 

  13. Chang, Y.J., Chen, S.F., Huang, J.D.: A Kinect-based system for physical rehabilitation: a pilot Study for young adults with motor disabilities. Res. Dev. Disabil. 32(06), 2566–2570 (2011)

    CrossRef  Google Scholar 

  14. Adinolfi, F., et al.: SmartCARE—an ICT platform in the domain of stroke pathology to manage rehabilitation treatment and telemonitoring at home. In: Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds.) Intelligent Interactive Multimedia Systems and Services 2016. Smart Innovation, Systems and Technologies, vol. 55, pp. 39–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39345-2_4

    CrossRef  Google Scholar 

  15. Abreu, J., Barroso, João, et al.: Assessment of microsoft kinect in the monitoring and rehabilitation of stroke patients. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 167–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_18

    CrossRef  Google Scholar 

  16. Han, S.H., Kim, H.G., Choi, H.J.: Rehabilitation posture correction using deep neural network. In: Proceedings of the International Conference on IEEE Big Data and Smart Computing (BigComp), pp. 400–402 (2017)

    Google Scholar 

  17. Caggianese, G., et al.: A rehabilitation system for post-operative heart surgery. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 554–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_55

    CrossRef  Google Scholar 

  18. Hoda, M., Hoda, Y., Hafidh, B., El Saddik, A.: Predicting muscle forces measurements from kinematics data using kinect in stroke rehabilitation. Multimed. Tools Appl. 77(2), 1885–1903 (2018)

    CrossRef  Google Scholar 

  19. Beaulieu-Boire, L., et al.: Balance rehabilitation using Xbox Kinect among an elderly population: a pilot study. J. Nov. Physiother. 5(02), 261 (2015)

    Google Scholar 

  20. Mousavi Hondori, H., Khademi, M.: A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014 (2014)

    CrossRef  Google Scholar 

  21. Baldominos, A., Saez, Y., del Pozo, C.G.: An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Procedia Comput. Sci. 64, 10–16 (2015)

    CrossRef  Google Scholar 

  22. Ge, Z., Fan, L.: Social development for children with autism using kinect gesture games: a case study in Suzhou Industrial Park Renai School. In: Cai, Y., Goei, S., Trooster, W. (eds.) Simulation and Serious Games for Education. Gaming Media and Social Effects, pp. 113–123. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-0861-0_8

    CrossRef  Google Scholar 

Download references

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pruna, E., Corrales, G., Gálvez, C., Escobar, I., Mena, L. (2018). Proposal for Muscle Rehabilitation of Lower Limbs Using an Interactive Virtual System Controlled Through Gestures. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)