Skip to main content

Pose Estimation Based on Monocular Visual Odometry and Lane Detection for Intelligent Vehicles

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10851)

Abstract

A fundamental element for the determination of the position (pose) of an object is to be able to determine the rotation and translation of the same in space. Visual odometry is the process of determining the location and orientation of a camera by analyzing a sequence of images. The algorithm allowed tracing the trajectory of a body in an open environment by comparing the mapping of points of a sequence of images to determine the variation of translation or rotation. The use of Lane detection is proposed to feed back the Visual Odometry algorithm, allowing more robust results. The algorithm was programmed on OpenCV 3.0 in Python 2.7 and was run on Ubuntu 16.04. The algorithm allowed tracing the trajectory of a body in an open environment by comparing the mapping of points of a sequence of images to determine the variation of translation or rotation. With the satisfactory results obtained, the development of a computational platform capable of determining the position of a vehicle in the space for assistance in parking is projected.

Keywords

  • Monocular visual odometry
  • Lane detection
  • Hough transform
  • Egomotion
  • Pose

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95282-6_40
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-95282-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC. In: IEEE International Conference on Robotics and Automation, pp. 4293–4299 (2009)

    Google Scholar 

  2. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 15–22 (2014)

    Google Scholar 

  3. Tardif, J.-P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2531–2538 (2008)

    Google Scholar 

  4. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. 24(5), 1015–1026 (2008)

    CrossRef  Google Scholar 

  5. Saha, A., Das Roy, D., Alam, T., Deb, K.: Automated road lane detection for intelligent vehicles. Glob. J. Comput. Sci. Technol., 12(6) (2012)

    Google Scholar 

  6. Kumar, A.M., Simon, P.: Review of lane detection and tracking algorithms in advanced driver assistance system. Int. J. Comput. Sci. Inf. Technol. 7(4), 65–78 (2015)

    Google Scholar 

  7. Kim, Z.: Robust lane detection and tracking in challenging scenerios. IEEE Trans. Intell. Transp. Syst. 9(1), 16–26 (2008)

    CrossRef  Google Scholar 

  8. Kaur, G., Kumar, D.: Lane detection techniques: a review. Int. J. Comput. Appl. 112(10), 975–8887 (2015)

    Google Scholar 

  9. Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. 25(3), 727–745 (2014)

    CrossRef  Google Scholar 

  10. Somasundaram, G.: Lane change detection and tracking for a safe-lane approach in real time vision based navigation systems. Ccsea 2011, 345–361 (2011)

    Google Scholar 

  11. Scaramuzza, D., Fraundorfer, F.: Tutorial: visual odometry. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    CrossRef  Google Scholar 

  12. Warren, R.: The perception of egomotion. J. Exp. Psychol. Hum. Percept. Perform. 2(3), 448–456 (1976)

    CrossRef  Google Scholar 

  13. Space, T.H.: Line detection by hough transformation. Transformation 2, 2–8 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Galarza, J., Pérez, E., Serrano, E., Tapia, A., Aguilar, W.G. (2018). Pose Estimation Based on Monocular Visual Odometry and Lane Detection for Intelligent Vehicles. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)