Augmented Reality System for the Complement of Cognitive Therapeutic Exercise in Children: Preliminary Tests

  • Edwin PrunaEmail author
  • Ivón Escobar
  • Andrés Acurio
  • Henry Cocha
  • José Bucheli
  • Luis Mena
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


This paper describes the development of an interactive and motivational tool, to give immersion in the cognitive therapeutic exercise (Perfetti method). This system is implemented with the use of virtual environments developed in the Unity 3D graphic engine. The environments present friendly, novel designs, which are shown to the user in augmented reality with the help of a high-end smartphone and virtual reality headset. In addition, the system helps in the process of recording activities and collecting important data for the monitoring and evolution of the users.


Augmented reality Cognitive therapeutic exercise Unity 3D 



We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.


  1. 1.
    Bryan Kolb, I.W.: Fundamentals of Human NeuroPsychology. Macmillan Publishers, Basingstoke (2009)Google Scholar
  2. 2.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  3. 3.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  4. 4.
    Oh, S., Bailenson, J.: Virtual and augmented reality. In: The International Encyclopedia of Media Effects (2017)Google Scholar
  5. 5.
    Rodrigues, J., Cardoso, P., Monteiro, J., Figueiredo, M.: Handbook of Research on Human-Computer Interfaces, Developments, and Applications. IGI Global, Hershey (2016)CrossRefGoogle Scholar
  6. 6.
    Hwang, G., Wu, P., Chen, C., Tu, N.: Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. In: Interactive Learning Environments, pp. 1895–1906 (2015)CrossRefGoogle Scholar
  7. 7.
    Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., Kato, H.: Augmented reality versus virtual reality for 3D object manipulation. IEEE Trans. Vis. Comput. Graph. 24(2), 1038–1048 (2015)CrossRefGoogle Scholar
  8. 8.
    Kerdvibulvech, C., Wang, C.-C.: A new 3D augmented reality application for educational games to help children in communication interactively. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 465–473. Springer, Cham (2016). Scholar
  9. 9.
    Sobota, B., Korečko, Š., Jacho, L., Pastornický, P., Hudák, M., Sivý, M.: Virtual-reality technologies and smart environments in the process of disabled people education. In: Emerging eLearning Technologies and Applications (ICETA) (2017)Google Scholar
  10. 10.
    Lin, C., Chang, Y.: Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities. In: Research in Developmental Disabilities, pp. 1–8 (2015)CrossRefGoogle Scholar
  11. 11.
    Suzuki, K.: Augmented human technology. In: Sankai, Y., Suzuki, K., Hasegawa, Y. (eds.) Cybernics: Fusion of Human, Machine and Information Systems. LNCS, pp. 111–131. Springer, Tokyo (2014). Scholar
  12. 12.
    Serrano, C.V., Bonilla, I., Gomez, F.V., Mendoza, M.: Development of a haptic interface for motor rehabilitation therapy. In: Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE, pp. 1156–1159 (2005)Google Scholar
  13. 13.
    Lin, C., Chai, H., Wang, J., Chen, C., Liu, Y., Chen, C., Lin, C.-W., Huang, Y.-M.: Augmented reality in educational activities for children with disabilities. Displays 42, 51–54 (2016)CrossRefGoogle Scholar
  14. 14.
    Robson, N., Faller, K., Ahir, V., Ferreira, A., Buchanan, J.: Creating a virtual perception for upper limb rehabilitation. Int. J. Biomed. Biol. Eng. 11, 152–157 (2017)Google Scholar
  15. 15.
    Hsiao, K., Rashvand, H.: Data modeling mobile augmented reality: integrated mind and body rehabilitation. Multimed. Tools Appl. 74, 3543–3560 (2013)CrossRefGoogle Scholar
  16. 16.
    Ravi, D., Kumar, N., Singhi, P.: Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy 103, 245–258 (2017)CrossRefGoogle Scholar
  17. 17.
    Kolar, P., et al.: Clinical Rehabilitation. Alena Kobesová, Prague (2014)Google Scholar
  18. 18.
    De Cecco, M., et al.: Augmented reality to enhance the clinician’s observation during assessment of daily living activities. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 3–21. Springer, Cham (2017). Scholar
  19. 19.
    Hatem, S., Saussez, G., Faille, M., Prist, V., Zhang, X., Dispa, D., Bleyenheuft, Y.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. (2016)Google Scholar
  20. 20.
    Manzanares, M., Galán, C., Morales, N., Guerrero, E.: Sensitive reeducation of the hand. In: Fisioterapia, pp. 114–122 (2004)Google Scholar
  21. 21.
    Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: A game based assistive tool for rehabilitation of dysphonic patients. In: Virtual and Augmented Assistive Technology (VAAT), pp. 9–14 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
    Email author
  • Ivón Escobar
    • 1
  • Andrés Acurio
    • 1
  • Henry Cocha
    • 1
  • José Bucheli
    • 1
  • Luis Mena
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations