Skip to main content

Lung Stem Cells in Lung Repair and Regeneration

  • Chapter
  • First Online:
Lung Stem Cell Behavior
  • 333 Accesses

Abstract

Intensive studies on lung development have helped to determine and characterize the lung-specific stem/progenitor cells and their regulatory molecular mechanisms. The adult lung consists of a wide range of different cell lineages, which are clearly quiescent in the absence of injury. The lung could remarkably respond quickly to different types of acute damage. This response is evidenced by the cell cycle, reentry of lung-specific stem cells, and their ability to differentiate to promote lung repair/regeneration. The process of lung repair and regeneration after acute injury, therefore, includes many of the stem and progenitor cell lineages. The accumulated research findings from lung developmental biology are currently widely used to determine the mechanisms that underlie lung repair/regeneration. This chapter describes our current knowledge of the roles of lung-specific stem cells in both lung repair and regeneration. It also describes how basic studies into lung developmental biology and regulatory molecular mechanisms are now being applied to lung repair/regeneration after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram, K. M., Patel, N., Spiteri, M. A., & Forsyth, N. R. (2016). Lung regeneration: Endogenous and exogenous stem cell mediated therapeutic approaches. International Journal of Molecular Sciences, 17, 128.

    Article  CAS  PubMed Central  Google Scholar 

  • Barkauskas, C. E., Cronce, M. J., Rackley, C. R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 123, 3025–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoncello, I. (2016). Properties of adult lung stem and progenitor cells. Journal of Cellular Physiology, 231, 2582–2589.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., & Fine, A. (2016). Stem cells in lung injury and repair. The American Journal of Pathology, 186, 2544–2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 1–16.

    Google Scholar 

  • Ding, B.-S., Nolan, D. J., Guo, P., et al. (2011). Endothelial-derived inductive angiocrine signals initiate and sustain regenerative lung alveolarization. Cell, 147(3), 539–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Badrawy, M. K., Shalabi, N. M., Mohamed, M. A., Ragab, A., & Abdelwahab, H. W. (2016). Stem cells and lung regeneration. International Journal of Stem Cells, 9, 31–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X., Bali, A. S., Randell, S. H., & Hogan, B. L. M. (2015). GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. The Journal of Cell Biology, 211, 669–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, M. D., Huang, S. X., & Snoeck, H. W. (2013). Stem cells of the respiratory system: From identification to differentiation into functional epithelium. BioEssays, 35, 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Guseh, J. S., Bores, S. A., Stanger, B. Z., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136, 1751–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herriges, M., & Morrisey, E. E. (2014). Lung development: Orchestrating the generation and regeneration of a complex organ. Development, 141, 502–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, R, Barkauskas, CE, Takeda, N, Bowie, EJ, Aghajanian, H, Wang, Q, Padmanabhan, A, Manderfield, LJ,Gupta, M, Li, D, Li, L, Trivedi, CM, Hogan, BL, Epstein, JA. (2015). Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 6, 6727-6737.

    Google Scholar 

  • Kotton, D. N., & Morrisey, E. E. (2014). Lung regeneration: Mechanisms, applications and emerging stem cell populations. Nature Medicine, 20, 822–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.-H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156, 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, M., Baarsma, H. A., & Königshoff, M. (2016). WNT signaling in lung aging and disease. Annals of the American Thoracic Society, 13, S411–S416.

    Article  PubMed  Google Scholar 

  • Liu, Y., Jiang, B.-J., Zhao, R.-Z., et al. (2016). Epithelial sodium channels in pulmonary epithelial progenitor and stem cells. International Journal of Biological Sciences, 12, 1150–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori, M., Mahoney, J. E., Stupnikov, M. R., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142, 258–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo-Saganta, A., Law, B. M., Tata, P. R., et al. (2015). Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 16, 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, T., Frank, D. B., Kadzik, R. S., et al. (2015). Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature, 526, 578–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlins, E. L. (2015). Stem cells: Emergency back-up for lung repair. Nature, 517, 556–557.

    Article  CAS  PubMed  Google Scholar 

  • Rock, J. R., Gao, X., Xue, Y., et al. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8, 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, W., Xu, J., & Warburton, D. (2009). Development, repair and fibrosis: What is common and why it matters. Respirology, 14, 656–655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stabler, C. T., & Morrisey, E. E. (2017). Developmental pathways in lung regeneration. Cell and Tissue Research, 367, 677.

    Article  CAS  PubMed  Google Scholar 

  • Stoltz, J.-F., de Isla, N., Li, Y. P., et al. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells International, 2015, 734731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadokoro, T., Gao, X., Hong, C. C., et al. (2016). BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development, 143, 764–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tata, P. R., Mou, H., Pardo-Saganta, A., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 503, 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao, P. N., Wei, S. C., Wu, M. F., et al. (2011). Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development, 138, 3533–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao, P. N., Matsuoka, C., Wei, S. C., et al. (2016). Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proceedings of the National Academy of Sciences of the United States of America, 113, 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weibel, E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. Am J Respir Crit CareMed. 191(5), 504–13.

    Google Scholar 

  • Whitsett, J. A., Haitchi, H. M., & Maeda, Y. (2011). Intersections between pulmonary development and disease. American Journal of Respiratory and Critical Care Medicine, 184, 401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S., Ma, K., Geng, Z., et al. (2015). Oriented cell division: New roles in guiding skin wound repair and regeneration. Bioscience Reports, 35, 6.

    Article  CAS  Google Scholar 

  • Zhang, Y., Goss, A. M., Cohen, E. D., et al. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nature Genetics, 40, 862–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Hashash, A. (2018). Lung Stem Cells in Lung Repair and Regeneration. In: Lung Stem Cell Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-95279-6_7

Download citation

Publish with us

Policies and ethics