Skip to main content

Signals and Molecular Mechanisms Regulating Stem Cell Behavior in Other Systems (e.g., Hematopoietic Stem Cells)

  • Chapter
  • First Online:
Lung Stem Cell Behavior
  • 308 Accesses

Abstract

Over recent years, many studies of stem cell behavior in different organs have accumulated evidences on the molecular mechanisms and signaling pathways that regulate key aspects of stem/progenitor cell behavior such as self-renewal, differentiation, and apoptosis. These molecular mechanisms include Wnt, TGF beta, and Notch signaling pathways that are well investigated in hematopoietic stem cells. In this chapter, we will discuss the hematopoietic stem/progenitor cell niche and both the molecular mechanisms and signaling pathways that control their behavior since this will improve our understanding of the role of these mechanisms and signals in the behavior of lung stem/progenitor cells that is still not well studied compared to hematopoietic stem/progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, G. B., Chabner, K. T., Alley, I. R., et al. (2006). Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599–603.

    Article  CAS  PubMed  Google Scholar 

  • Adolfsson, J., Borge, O. J., Bryder, D., et al. (2001). Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity, 15, 659–669.

    Article  CAS  PubMed  Google Scholar 

  • Audet, J., Miller, C. L., Rose-John, S., Piret, J., & Eaves, C. (2001). Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 1757–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batard, P., Monier, M. N., Fortunel, N., et al. (2000). TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. Journal of Cell Science, 113, 383–390.

    PubMed  CAS  Google Scholar 

  • Berika, M., Ku, J., Huang, H., & El-Hashash, A. H. (2016). Gene and signals regulating stem cell fate. In A. El-Hashash (Ed.), Developmental and stem cell biology in health and disease (pp. 36–48). Madison: Bentham Science Publisher, USA.

    Chapter  Google Scholar 

  • Blank, U., & Karlsson, S. (2011). The role of Smad signaling in hematopoiesis and translational hematology. Leukemia, 25, 1379–1388.

    Article  CAS  PubMed  Google Scholar 

  • Borge, O. J., Ramsfjell, V., Veiby, O., Murphy, M. J., Jr., Lok, S., & Jacobsen, S. E. (1996). Thrombopoietin, but not erythropoietin promotes viability and inhibits apoptosis of multipotent murine hematopoietic progenitor cells in vitro. Blood, 88, 2859–2870.

    PubMed  CAS  Google Scholar 

  • Bowie, M. B., McKnight, K. D., Kent, D. G., McCaffrey, L., Hoodless, P. A., & Eaves, C. J. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. The Journal of Clinical Investigation, 116, 2808–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buza-Vidas, N., Antonchuk, J., Qian, H., et al. (2006). Cytokines regulate postnatal hematopoietic stem cell expansion: Opposing roles of thrombopoietin and LNK. Genes & Development, 20, 2018–2023.

    Article  CAS  Google Scholar 

  • Calvi, L. M., Adams, G. B., Weibrecht, K. W., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, J. L., & Weissman, I. L. (2001). Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 14541–14546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobas, M., Wilson, A., Ernst, B., et al. (2004). Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. The Journal of Experimental Medicine, 199, 221–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C., & Bernstein, I. D. (2005). Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 106, 2693–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, A. W., Rattis, F. M., DiMascio, L. N., et al. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 6, 314–322.

    Article  CAS  PubMed  Google Scholar 

  • Ema, H., Sudo, K., Seita, J., et al. (2005). Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Developmental Cell, 8, 907–914.

    Article  CAS  PubMed  Google Scholar 

  • Enver, T., Heyworth, C. M., & Dexter, T. M. (1998). Do stem cells play dice? Blood, 92, 348–351.

    PubMed  CAS  Google Scholar 

  • Garbe, A., Spyridonidis, A., Mobest, D., et al. (1997). Transforming growth factor-beta 1 delays formation of granulocyte-macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haemopoietic progenitor cells. British Journal of Haematology, 99, 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Ikuta, K., & Weissman, I. L. (1992). Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proceedings of the National Academy of Sciences of the United States of America, 89, 1502–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K., Hirao, A., Arai, F., et al. (2004). Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature, 431, 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Hirao, A., Arai, F., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 12, 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, F., Itoh, S., Goumans, M. J., et al. (2004). Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. The EMBO Journal, 23, 541–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanu, F. N., Murdoch, B., Gallacher, L., et al. (2000). The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. The Journal of Experimental Medicine, 192, 1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanu, F. N., Murdoch, B., Miyabayashi, T., et al. (2001). Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood, 97, 1960–1967.

    Article  CAS  PubMed  Google Scholar 

  • Kaushansky, K., & Drachman, J. G. (2002). The molecular and cellular biology of thrombopoietin: The primary regulator of platelet production. Oncogene, 21, 3359–3367.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, S., Roberts, A. W., Metcalf, D., et al. (1998). Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proceedings of the National Academy of Sciences of the United States of America, 95, 1195–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstetter, P., Anderson, K., Porse, B. T., et al. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 7, 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  • Kunisato, A., Chiba, S., Nakagami-Yamaguchi, E., et al. (2003). HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood, 101, 1777–1783.

    Article  CAS  PubMed  Google Scholar 

  • Labbé, E., Letamendia, A., & Attisano, L. (2000). Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proceedings of the National Academy of Sciences of the United States of America, 97, 8358–8363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson, J., Blank, U., Helgadottir, H., et al. (2003). TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood, 102, 3129–3135.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, J., Blank, U., Klintman, J., Magnusson, M., & Karlsson, S. (2005). Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-beta signaling in vivo. Experimental Hematology, 33, 592–596.

    Article  CAS  PubMed  Google Scholar 

  • Mancini, S. J., Mantei, N., Dumortier, A., et al. (2005). Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood, 105, 2340–2342.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, Y., Kinjo, K., Mulligan, R. C., et al. (2004). Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf, D. (1993). Hematopoietic regulators: Redundancy or subtlety? Blood, 82, 3515–3523.

    PubMed  CAS  Google Scholar 

  • Miller, C. L., & Eaves, C. J. (1997). Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proceedings of the National Academy of Sciences of the United States of America, 94, 13648–13653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner, L. A., Kopan, R., Martin, D. I., et al. (1994). A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood, 83, 2057–2062.

    PubMed  CAS  Google Scholar 

  • Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505, 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, S. J., & Weissman, I. L. (1994). The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity, 1, 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Nandurkar, H. H., Robb, L., Tarlinton, D., et al. (1997). Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood, 90, 2148–2159.

    PubMed  CAS  Google Scholar 

  • Nilsson, S. K., Johnston, H. M., Whitty, G. A., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  • Nishita, M., Hashimoto, M. K., Ogata, S., et al. (2000). Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature, 403, 781–785.

    Article  CAS  PubMed  Google Scholar 

  • Ohishi, K., Varnum-Finney, B., & Bernstein, I. D. (2002). Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(−) cord blood cells. The Journal of Clinical Investigation, 110, 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, S., Nakauchi, H., Nagayoshi, K., et al. (1992). In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood, 80, 3044–3050.

    PubMed  CAS  Google Scholar 

  • Osawa, M., Hanada, K., Hamada, H., et al. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273, 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Parmar, K., Mauch, P., Vergilio, J. A., et al. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104, 5431–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestina, T.I., Cleveland, J., Yang, C., Zambetti, G., & Jackson C (2001). Mpl ligand prevents lethalmyelosuppression by inhibiting p53-dependent apoptosis. Blood, 98, 2084–2090.

    Google Scholar 

  • Radtke, F., Wilson, A., Mancini, S. J., et al. (2004). Notch regulation of lymphocyte development and function. Nature Immunology, 5, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Reya, T., Duncan, A. W., Ailles, L., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  • Seita, J., Ema, H., Ooehara, J., et al. (2007). Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 104, 2349–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitnicka, E., Ruscetti, F. W., Priestley, G. V., et al. (1996). Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood, 88, 82–88.

    PubMed  CAS  Google Scholar 

  • Solar, G. P., Kerr, W. G., Zeigler, F. C., et al. (1998). Role of c-mpl in early hematopoiesis. Blood, 92, 4–10.

    PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Heimfeld, S., & Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science, 241, 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Stier, S., Cheng, T., Dombkowski, D., et al. (2002). Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood, 99, 2369–2378.

    Article  CAS  PubMed  Google Scholar 

  • Stier, S., Ko, Y., Forkert, R., et al. (2005). Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. The Journal of Experimental Medicine, 201, 1781–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, A., Raya, A., Kawakami, Y., et al. (2006). Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 10294–10299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaki, S., Sauer, K., Iritani, B. M., et al. (2000). Control of B cell production by the adaptor protein lnk: Definition of a conserved family of signal-modulating proteins. Immunity, 13, 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till, J. E., McCulloch, E. A., & Siminovitch, L. (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences of the United States of America, 51, 29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, W., Zhang, J., & Lodish, H. F. (2005). Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood, 105, 4604–4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowbridge, J. J., Xenocostas, A., Moon, R. T., et al. (2006). Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nature Medicine, 12, 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Varnum-Finney, B., Xu, L., Brashem-Stein, C., et al. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Medicine, 6, 1278–1281.

    Article  CAS  PubMed  Google Scholar 

  • Varnum-Finney, B., Brashem-Stein, C., & Bernstein, I. D. (2003). Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood, 101, 1784–1789.

    Article  CAS  PubMed  Google Scholar 

  • Vas, V., Szilagyi, L., Paloczi, K., et al. (2004). Soluble Jagged-1 is able to inhibit the function of its multivalent form to induce hematopoietic stem cell self-renewal in a surrogate in vitro assay. Journal of Leukocyte Biology, 75, 714–720.

    Article  CAS  PubMed  Google Scholar 

  • Velazquez, L., Cheng, A. M., Fleming, H. E., et al. (2002). Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. The Journal of Experimental Medicine, 195, 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willert, K., Brown, J. D., Danenberg, E., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423, 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature Reviews. Immunology, 6, 93–106.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Bryder, D., Adolfsson, J., et al. (2005). Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood, 105, 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Huynh, H., Umikawa, M., et al. (2011). Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood, 117, 470–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Hashash, A. (2018). Signals and Molecular Mechanisms Regulating Stem Cell Behavior in Other Systems (e.g., Hematopoietic Stem Cells). In: Lung Stem Cell Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-95279-6_4

Download citation

Publish with us

Policies and ethics