Training for Bus Bodywork in Virtual Reality Environments

  • Danny F. HerreraEmail author
  • S. Bolívar AcostaEmail author
  • Washington X. QuevedoEmail author
  • Jhon A. BalsecaEmail author
  • Víctor H. AndaluzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10850)


This document presents a virtual training system oriented for learning of electric welding applied to automotive body assembly industry. The training tasks are developed in a virtual immersion environment created with Unity 3D graphic software, in order to improve the user’s skills and welding skills through a teaching-learning process that allows the virtual manipulation of industrial instruments. In this way, the experience in welding task is obtained, risks of industrial accidents are reduced and waste is eliminated. The experimental results show the behavior of the system and the evolution of the user’s skills.


Electric welding Virtual reality Bodyworks assembly 



The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this work.


  1. 1.
    Turner, C.J., Hutabarat, W., Oyekan, J., Tiwari, A.: Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 46, 1–13 (2016)CrossRefGoogle Scholar
  2. 2.
    Buttussi, F., Chittaro, L.: Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Vis. Comput. Graph. 1–14 (2016)Google Scholar
  3. 3.
    Pais, F., Patrao, B., Menezes, P.: Virtual reality as a training tool for human interactions. In: 4th Experiment@ International Conference, vol. 4, pp. 119–120, June 2017Google Scholar
  4. 4.
    Wang, R., Yao, J., Wang, L., Liu, X., Wang, H., Zheng, L.: A surgical training system for four medical punctures based on virtual reality and haptic feedback. In: IEEE Symposium on 3D User Interfaces (3DUI), L.A., pp. 215–216, March 2017Google Scholar
  5. 5.
    Mourning, R., Tang, Y.: Virtual reality social training for adolescents with high-functioning autism. In: IEEE International Conference on Systems, Man, and Cybernetics Budapest, Hungary, pp. 4848–4853 (2016)Google Scholar
  6. 6.
    Hament, B., Cater, A., Oh, P.Y.: Coupling virtual reality and motion platforms for snowboard training. In: 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Korea, pp. 556–560, July 2017Google Scholar
  7. 7.
    Makarova, I., Khabibullin, R., Belyaev, E., Bogateeva, A.: The application of virtual reality technologies in engineering education for the automotive industry. In: IEEE International Conference on Interactive Collaborative Learning, Italy, pp. 536–544 (2015)Google Scholar
  8. 8.
    Cigert, J., Sbaouni, M., Segot, C.: Virtual reality training of manual procedures in the nuclear sector. In: IEEE Virtual Reality Conference, France, pp. 381–382, March 2015Google Scholar
  9. 9.
    Cordeiro, C., Paludo, J., Tanaka, E., Dominguez, L., Gadbem, E., Euflausino, A.: Desenvolvimento de Ambiente de Realidade Virtual Imersivo para Treinamento de Eletricistas Habilitados em Subestações. In: IEEE XVII Symposium on Virtual and Augmented Reality, pp. 142–146 (2015)Google Scholar
  10. 10.
    White, S., Prachyabrued, M., Baghi, D., Aglawe, A., Reiners, D., Borst, C., Chambers, T.: Virtual welder trainer. In: IEEE Virtual Reality, USA, March 2009Google Scholar
  11. 11.
    Benkai, X., Quiang, Z., Liang, Y.: A real-time welding training system based on Virtual Reality. In: 2015 IEEE Virtual Reality (VR), pp. 309–310 (2015)Google Scholar
  12. 12.
    Andaluz, V.H., et al.: Immersive industrial process environment from a P&ID diagram. In: Bebis, G., et al. (eds.) Advances in Visual Computing, ISVC 2016. LNCS, vol. 10072, pp. 701–712. Springer, Cham (2016). Scholar
  13. 13.
    Khastgir, S., Birrell, S., Dhadyalla, G., Jennings, P.: Development of a drive-in driver-in-the-loop fully immersive driving simulator for virtual validation of automotive systems. In: IEEE 81st Vehicular Technology Conference, pp. 1–4 (2015)Google Scholar
  14. 14.
    Quevedo, W.X., Sánchez, J.S., Arteaga, O., ÁV, M., Zambrano, V.D., Sánchez, C.R., Andaluz, V.H.: Virtual reality system for training in automotive mechanics. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part I. LNCS, vol. 10324, pp. 185–198. Springer, Cham (2017). Scholar
  15. 15.
    Wu, X., Fei, G.: Research of virtual reality technology in automotive engine assembly teaching. In: 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 1, pp. 167–169 (2011)Google Scholar
  16. 16.
    Freschi, F., Giaccone, L., Mitolo, M.: Arc welding processes: an electrical safety analysis. IEEE Trans. Ind. Appl. 53(2), 819–825 (2017)CrossRefGoogle Scholar
  17. 17.
    Manual de Electrodos para Soldar, 2nd edn. INFRA, pp. 4–5 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations