Skip to main content

Web-Based Real-Time LADAR Data Visualization with Multi-user Collaboration Support

  • 3191 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 10850)

Abstract

In this paper we present a web-based visualization system developed for visualizing real-time point cloud data obtained from LADAR (or other) sensors. The system allows direct visualization of captured data, visualization of data from database or visualization of preprocessed data (e.g. labeled or classified data). The system allows the concurrent visualization from same or different data-sources on multiple clients in the web browser. Due to the use of modern web technologies the client can also be used on mobile devices. The system is developed using modern client- and server-side web technologies. The system allows connection with an existing LADAR sensor grabber applications through use of UDP sockets. Both server- and client-side parts of the system are modular and allow the integration of newly developed modules and designing a specific work-flow scenarios for target end-user groups. The system allows the interactive visualization of datasets with millions of points as well as streaming visualization with high throughput speeds.

Keywords

  • LiDAR
  • LADAR
  • Point cloud data
  • WebGL
  • Data visualization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95270-3_17
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-95270-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    The application is developed in C++ and does was not developed as part of the presented work.

  2. 2.

    https://nodejs.org/.

  3. 3.

    http://socket.io/.

  4. 4.

    https://www.postgresql.org/.

  5. 5.

    https://github.com/pgpointcloud/pointcloud.

  6. 6.

    https://angular.io/.

  7. 7.

    http://getbootstrap.com/.

  8. 8.

    https://threejs.org.

  9. 9.

    https://www.liblas.org/samples/.

References

  1. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D.B., Seitz, S.M., Fox, D.: Interactive 3D modeling of indoor environments with a consumer depth camera. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 75–84. ACM (2011)

    Google Scholar 

  2. Haala, N., Peter, M., Kremer, J., Hunter, G.: Mobile LiDAR mapping for 3D point cloud collection in urban areas - a performance test. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 37, 1119–1127 (2008)

    Google Scholar 

  3. Molebny, V., McManamon, P.F., Steinvall, O., Kobayashi, T., Chen, W.: Laser radar: historical prospective-from the east to the west. Opt. Eng. 56, 56 (2016). https://spie.org/publications/journal/10.1117/1.OE.56.3.031220?SSO=1

    CrossRef  Google Scholar 

  4. Rosnell, T., Honkavaara, E.: Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12(1), 453–480 (2012)

    CrossRef  Google Scholar 

  5. Wang, C.C., Thorpe, C., Suppe, A.: LADAR-based detection and tracking of moving objectsfrom a ground vehicle at high speeds. In: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), pp. 416–421, June 2003

    Google Scholar 

  6. Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian detection and tracking using three-dimensional LADAR data. Int. J. Robot. Res. 29(12), 1516–1528 (2010)

    CrossRef  Google Scholar 

  7. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In: IEEE International Conference on Robotics and automation (ICRA) 2011, pp. 1–4. IEEE (2011)

    Google Scholar 

  8. Kreylos, O., Bawden, G.W., Kellogg, L.H.: Immersive visualization and analysis of LiDAR data. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 846–855. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_81

    CrossRef  Google Scholar 

  9. Su, T., Wang, W., Lv, Z., Wu, W., Li, X.: Rapid delaunay triangulation for randomly distributed point cloud data using adaptive hilbert curve. Comput. Graph. 54, 65–74 (2016). Special Issue on CAD/Graphics 2015

    CrossRef  Google Scholar 

  10. Hug, C., Krzystek, P., Fuchs, W.: Advanced lidar data processing with lastools. In: ISPRS Congress, pp. 12–23 (2004)

    Google Scholar 

  11. van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M., Gonçalves, R.: Massive point cloud data management. Comput. Graph. 49(C), 92–125 (2015)

    CrossRef  Google Scholar 

  12. Lavrič, P., Bohak, C., Marolt, M.: Collaborative view-aligned annotations in web-based 3D medical data visualization. In: MIPRO 2017, 40th Jubilee International Convention, 22–26 May 2017, Opatija, Croatia, proceedings, pp. 276–280 (2017)

    Google Scholar 

  13. Schütz, M.: Potree: Rendering Large Point Clouds in Web Browsers. Master’s thesis, Institute of Computer Graphics and Algorithms, Vienna, University of Technology, Favoritenstrasse 9–11/186, A-1040 Vienna, Austria, September 2016

    Google Scholar 

  14. Marion, C., Jomier, J.: Real-time collaborative scientific WebGL visualization with WebSocket. In: Proceedings of the 17th International Conference on 3D Web Technology, pp. 47–50. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciril Bohak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bohak, C., Kim, B.H., Kim, M.Y. (2018). Web-Based Real-Time LADAR Data Visualization with Multi-user Collaboration Support. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)